NCERT solutions for Class 11 Mathematics chapter 6 - Linear Inequalities [Latest edition]

Advertisement

Chapters

Advertisement
Advertisement

Solutions for Chapter 6: Linear Inequalities

Below listed, you can find solutions for Chapter 6 of CBSE, Karnataka Board PUC NCERT for Class 11 Mathematics.


Exercise 6.1Exercise 6.2Exercise 6.3Miscellaneous Exercise
Exercise 6.1 [Pages 122 - 123]

NCERT solutions for Class 11 Mathematics Chapter 6 Linear Inequalities Exercise 6.1 [Pages 122 - 123]

Exercise 6.1 | Q 1.1 | Page 122

Solve 24x < 100, when x is a natural number 

Exercise 6.1 | Q 1.2 | Page 122

Solve 24x < 100, when x is an integer

Exercise 6.1 | Q 2.1 | Page 122

Solve –12x > 30, when x is a natural number

Exercise 6.1 | Q 2.2 | Page 122

Solve –12x > 30, when x is an integer

Exercise 6.1 | Q 3.1 | Page 122

Solve 5x– 3 < 7, when x is an integer

Exercise 6.1 | Q 3.2 | Page 122

Solve 5x– 3 < 7, when x is a real number

Exercise 6.1 | Q 4.1 | Page 122

Solve 3x + 8 > 2, when  x is an integer

Exercise 6.1 | Q 4.2 | Page 122

Solve 3x + 8 > 2, when x is a real number

Exercise 6.1 | Q 5 | Page 122

Solve the given inequality for real x: 4x + 3 < 5x + 7

Exercise 6.1 | Q 6 | Page 122

Solve the given inequality for real x: 3x – 7 > 5x – 1

Exercise 6.1 | Q 7 | Page 122

Solve the given inequality for real x: 3(x – 1) ≤ 2 (– 3)

Exercise 6.1 | Q 8 | Page 122

Solve the given inequality for real x: 3(2 – x) ≥ 2(1 – x)

Exercise 6.1 | Q 9 | Page 122

Solve the given inequality for real x : x+ `x/2` + `x/3` < 11`

Exercise 6.1 | Q 10 | Page 122

Solve the given inequality for real x : `x/3 > x/2 + 1`

Exercise 6.1 | Q 11 | Page 122

Solve the given inequality for real x : `(3(x-2))/5 <= (5(2-x))/3`

Exercise 6.1 | Q 11 | Page 122

Solve the given inequality for real x : `(3(x-2))/5 <= (5(2-x))/3`

Exercise 6.1 | Q 12 | Page 122

Solve the given inequality for real x: `1/2 ((3x)/5 + 4) >= 1/3 (x -6)`

Exercise 6.1 | Q 13 | Page 122

Solve the given inequality for real x: 2(2x + 3) – 10 < 6 (x – 2)

Exercise 6.1 | Q 14 | Page 122

Solve the given inequality for real x: 37 ­– (3x + 5) ≥ 9x – 8(– 3)

Exercise 6.1 | Q 15 | Page 122

Solve the given inequality for real x: `x/4 < (5x - 2)/3 - (7x - 3)/5`

Exercise 6.1 | Q 16 | Page 122

Solve the given inequality for real x: `(2x- 1)/3 >= (3x - 2)/4 - (2-x)/5`

Exercise 6.1 | Q 17 | Page 122

Solve the given inequality and show the graph of the solution on number line: 3x – 2 < 2x +1

Exercise 6.1 | Q 18 | Page 122

Solve the given inequality and show the graph of the solution on number line: 5x – 3 ≥ 3x – 5

Exercise 6.1 | Q 19 | Page 122

Solve the given inequality and show the graph of the solution on number line: 3(1 – x) < 2 (x + 4)

Exercise 6.1 | Q 20 | Page 122

Solve the given inequality and show the graph of the solution on number line `x/2 >= (5x -2)/3 - (7x - 3)/5`

Exercise 6.1 | Q 21 | Page 122

Ravi obtained 70 and 75 marks in first two unit test. Find the minimum marks he should get in the third test to have an average of at least 60 marks.

Exercise 6.1 | Q 22 | Page 122

To receive Grade ‘A’ in a course, one must obtain an average of 90 marks or more in five examinations (each of 100 marks). If Sunita’s marks in first four examinations are 87, 92, 94 and 95, find minimum marks that Sunita must obtain in fifth examination to get grade ‘A’ in the course.

Exercise 6.1 | Q 23 | Page 122

Find all pairs of consecutive odd positive integers both of which are smaller than 10 such that their sum is more than 11.

Exercise 6.1 | Q 24 | Page 122

Find all pairs of consecutive even positive integers, both of which are larger than 5 such that their sum is less than 23.

Exercise 6.1 | Q 25 | Page 123

The longest side of a triangle is 3 times the shortest side and the third side is 2 cm shorter than the longest side. If the perimeter of the triangle is at least 61 cm, find the minimum length of the shortest side.

Exercise 6.1 | Q 26 | Page 123

A man wants to cut three lengths from a single piece of board of length 91 cm. The second length is to be 3 cm longer than the shortest and the third length is to be twice as long as the shortest. What are the possible lengths of the shortest board if the third piece is to be at least 5 cm longer than the second?

[Hint: If x is the length of the shortest board, then x, (x + 3) and 2x are the lengths of the second and third piece, respectively. Thus, x = (+ 3) + 2≤ 91 and 2x ≥ (+ 3) + 5]

Exercise 6.2 [Page 127]

NCERT solutions for Class 11 Mathematics Chapter 6 Linear Inequalities Exercise 6.2 [Page 127]

Exercise 6.2 | Q 1 | Page 127

Solve the given inequality graphically in two-dimensional plane: x + y < 5

Exercise 6.2 | Q 2 | Page 127

Solve the given inequality graphically in two-dimensional plane: 2x + y ≥ 6

Exercise 6.2 | Q 3 | Page 127

Solve the given inequality graphically in two-dimensional plane: 3x + 4y ≤ 12

Exercise 6.2 | Q 4 | Page 127

Solve the given inequality graphically in two-dimensional plane: y + 8 ≥ 2x

Exercise 6.2 | Q 5 | Page 127

Solve the given inequality graphically in two-dimensional plane: x – y ≤ 2

Exercise 6.2 | Q 6 | Page 127

Solve the given inequality graphically in two-dimensional plane: 2x – 3y > 6

Exercise 6.2 | Q 7 | Page 127

Solve the given inequality graphically in two-dimensional plane: –3x + 2y ≥ –6

Exercise 6.2 | Q 8 | Page 127

Solve the given inequality graphically in two-dimensional plane: 3y – 5x < 30

Exercise 6.2 | Q 9 | Page 127

Solve the given inequality graphically in two-dimensional plane: y < –2

Exercise 6.2 | Q 10 | Page 127

Solve the given inequality graphically in two-dimensional plane: x > –3

Exercise 6.3 [Page 129]

NCERT solutions for Class 11 Mathematics Chapter 6 Linear Inequalities Exercise 6.3 [Page 129]

Exercise 6.3 | Q 1 | Page 129

Solve the following system of inequalities graphically: x ≥ 3, y ≥ 2

Exercise 6.3 | Q 2 | Page 129

Solve the following system of inequalities graphically: 3x + 2y ≤ 12, x ≥ 1, y ≥ 2

Exercise 6.3 | Q 3 | Page 129

Solve the following system of inequalities graphically: 2x + y≥ 6, 3x + 4y ≤ 12

Exercise 6.3 | Q 4 | Page 129

Solve the following system of inequalities graphically: x + y≥ 4, 2x – y > 0

Exercise 6.3 | Q 5 | Page 129

Solve the following system of inequalities graphically: 2x – y > 1, x – 2y < –1

Exercise 6.3 | Q 6 | Page 129

Solve the following system of inequalities graphically: x + y ≤ 6, x + y ≥ 4

Exercise 6.3 | Q 7 | Page 129

Solve the following system of inequalities graphically: 2x + y≥ 8, x + 2y ≥ 10

Exercise 6.3 | Q 8 | Page 129

Solve the following system of inequalities graphically: x + y ≤ 9, y > xx ≥ 0

Exercise 6.3 | Q 9 | Page 129

Solve the following system of inequalities graphically: 5x + 4y ≤ 20, x ≥ 1, y ≥ 2

Exercise 6.3 | Q 10 | Page 129

Solve the following system of inequalities graphically: 3x + 4y ≤ 60, x + 3y ≤ 30, x ≥ 0, y ≥ 0

Exercise 6.3 | Q 11 | Page 129

Solve the following system of inequalities graphically: 2x + y≥ 4, x + y ≤ 3, 2x – 3y ≤ 6

Exercise 6.3 | Q 12 | Page 129

Solve the following system of inequalities graphically: x – 2y ≤ 3, 3x + 4y ≥ 12, x ≥ 0, y ≥ 1

Exercise 6.3 | Q 13 | Page 129

Solve the following system of inequalities graphically: 4x + 3y ≤ 60, y ≥ 2xx ≥ 3, xy ≥ 0

Exercise 6.3 | Q 14 | Page 129

Solve the following system of inequalities graphically: 3x + 2y ≤ 150, x + 4y ≤ 80, x ≤ 15, y ≥ 0, x ≥ 0

Exercise 6.3 | Q 15 | Page 129

Solve the following system of inequalities graphically: x + 2y ≤ 10, x + y ≥ 1, x – y ≤ 0, x ≥ 0, y ≥ 0

Miscellaneous Exercise [Page 132]

NCERT solutions for Class 11 Mathematics Chapter 6 Linear Inequalities Miscellaneous Exercise [Page 132]

Miscellaneous Exercise | Q 1 | Page 132

Solve the inequality 2 ≤ 3x – 4 ≤ 5

Miscellaneous Exercise | Q 2 | Page 132

Solve the inequality 6 ≤ –3(2x – 4) < 12

Miscellaneous Exercise | Q 3 | Page 132

Solve the inequality `-3 <= 4 - (7x)/2  < = 18`

Miscellaneous Exercise | Q 4 | Page 132

Solve the inequality `-15 < (3(x -  2))/5 <= 0`

Miscellaneous Exercise | Q 5 | Page 132

Solve the inequality  `-12 < 4 - (3x)/(-5) <= 2`

Miscellaneous Exercise | Q 6 | Page 132

Solve the inequality `7 <= (3x + 11)/2 <= 11`

Miscellaneous Exercise | Q 7 | Page 132

Solve the inequalities and represent the solution graphically on number line: 5x + 1 > –24, 5x – 1 < 24

Miscellaneous Exercise | Q 8 | Page 132

Solve the inequalities and represent the solution graphically on number line: 2(x – 1) < x + 5, 3(x + 2) > 2 – x

Miscellaneous Exercise | Q 9 | Page 132

Solve the following inequalities and represent the solution graphically on number line:

3x – 7 > 2(x – 6), 6 – x > 11 – 2x

Miscellaneous Exercise | Q 10 | Page 132

Solve the inequalities and represent the solution graphically on number line: 5(2x – 7) – 3(2x + 3) ≤ 0, 2x + 19 ≤ 6x + 47

Miscellaneous Exercise | Q 11 | Page 132

A solution is to be kept between 68°F and 77°F. What is the range in temperature in degree Celsius (C) if the Celsius/Fahrenheit (F) conversion formula is given by `F= 9/8` C + 32 ?

Miscellaneous Exercise | Q 12 | Page 132

A solution of 8% boric acid is to be diluted by adding a 2% boric acid solution to it. The resulting mixture is to be more than 4% but less than 6% boric acid. If we have 640 litres of the 8% solution, how many litres of the 2% solution will have to be added?

Miscellaneous Exercise | Q 13 | Page 132

How many litres of water will have to be added to 1125 litres of the 45% solution of acid so that the resulting mixture will contain more than 25% but less than 30% acid content?

Miscellaneous Exercise | Q 14 | Page 132

IQ of a person is given by the formula

IQ = `(MA)/(CA) xx100`

Where MA is mental age and CA is chronological age. If 80 ≤ IQ ≤ 140 for a group of 12 years old children, find the range of their mental age.

Advertisement

Solutions for Chapter 6: Linear Inequalities

Exercise 6.1Exercise 6.2Exercise 6.3Miscellaneous Exercise

NCERT solutions for Class 11 Mathematics chapter 6 - Linear Inequalities

Shaalaa.com has the CBSE, Karnataka Board PUC Mathematics Class 11 Mathematics CBSE, Karnataka Board PUC solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. NCERT solutions for Mathematics Class 11 Mathematics CBSE, Karnataka Board PUC 6 (Linear Inequalities) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. NCERT textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Class 11 Mathematics chapter 6 Linear Inequalities are Inequalities - Introduction, Algebraic Solutions of Linear Inequalities in One Variable and Their Graphical Representation, Graphical Solution of Linear Inequalities in Two Variables, Solution of System of Linear Inequalities in Two Variables.

Using NCERT Class 11 Mathematics solutions Linear Inequalities exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in NCERT Solutions are essential questions that can be asked in the final exam. Maximum CBSE, Karnataka Board PUC Class 11 Mathematics students prefer NCERT Textbook Solutions to score more in exams.

Get the free view of Chapter 6, Linear Inequalities Class 11 Mathematics additional questions for Mathematics Class 11 Mathematics CBSE, Karnataka Board PUC, and you can use Shaalaa.com to keep it handy for your exam preparation.

Advertisement
Share
Notifications



      Forgot password?
Use app×