#### Chapters

Chapter 2: Sales Tax and Value Added Tax

Chapter 3: Banking

Chapter 4: Shares and Dividends

Chapter 5: Linear Inequations

Chapter 6: Quadratic Equations

Chapter 7: Problems Based On Quadratic Equations

Chapter 8: Reflection

Chapter 9: Ratio and Proportion

Chapter 10: Remainder And Factor Theorems

Chapter 11: Matrices

Chapter 12: Distance and Section Formulae

Chapter 13: Equation of A Straight Line

Chapter 14: Symmetry

Chapter 15: Similarity

Chapter 16: Loci

Chapter 17: Circles

Chapter 18: Constructions

Chapter 19: Mensuration I

Chapter 20: Mensuration II

Chapter 21: Trigonometric Identities

Chapter 22: Heights and Distances

Chapter 23: Graphical Representations

Chapter 24: Measures Of Central Tendency

Chapter 25: Probability

#### Frank Frank Class 10 Mathematics Part 2

## Chapter 11: Matrices

#### Chapter 11: Matrices Exercise Exercise 11.1 solutions [Page 0]

Classify the following rnatrix :

`|(2,1),(0 , 6),(8 , 7) |`

Classify the following matrix :

`[(7, 0)]`

Classify the following matrix :

`|(800),(521)|`

Classify the following matrix :

`|(1 , 1),(0,9)|`

Classify the following matrix :

`|(11 , 3 , 0),(21 , 8 , 4),(15,5,2)|`

Find the values of a and b) if [2a + 3b a - b] = [19 2].

Find the values of x and y, if `|(3"x" - "y"),(5)| = |(7) , ("x + y")|`

Find the values of a, b, c and d, if `|("a + 3b", 3"c" + "d"),(2"a" - "b" , "c" - 2"d")| = |(5 , 8),(3 , 5)|`

If A = `|(1215),(1117)|` and B = `|(2,7),(4,9)|` , find : A + B

If A = `|(1215),(1117)|` and B = `|(2,7),(4,9)|` find : 2A + 3B

If A = `|(1215),(1117)|` and B = `|(2,7),(4,9)|` find A - 2B

If A = [4 7] and B = [3 1] , find: A+2B

If A = [4 7] and B = [3 l], find: A - B

If A = [4 7] and B = [3 l], find : 2A - 3B

If P = `|(2 , 9),(5 , 7)|` and Q = `|(7 , 3),(4 , 1)|` , find 2P + 3Q

If P =`|(2,9),(5,7)|` and Q = `|(7,3),(4,1)|` find 2Q - P

If P = `|(2,9),(5 , 7)|` and Q = `|(7 , 3),(4 , 1)|` find 3P - 2Q

If A = `|(17 , 5 , 19),(11 , 8 , 13)|` and B =`|(9,3,7),(1,6,5)|` , find 2A - 3B

If M = `|(8,3),(9,7),(4,3)|` and N = `|(4,7),(5,3),(10 , 1)|` find M+N

If M =`|(8,3),(9,7),(4,3)|` and N = `|(4,7),(5,3),(10,1)|` find M - N

If A =`|(1, 9 , 4),(5 , 0 , 3)|` , find negative A

If A = `|(1,9,4),(5 , 0 , 3)|` find A'

If P = (8 , 5),(7 , 2) , find P^{t}

If P= (8,5),(7,2) find : P + P^{t}

If P = `|(8,5),(7,2)|` find P - P^{t}

If B = `|(15 , 13),(11,12),(10,17)|` , find the transpose of matrix Band If possible find the sum of the two matrices. If not possible state the reason.

If A = `|(5,"r"),("p",7)|` , c and if A + B = (9,7),(5,8) , find the values of p,q,r and s.

If A = `|("p","q"),(8,5)|` , B = `|(3"p",5"q"),(2"q" , 7)|` and if A + B = `|(12,6),(2"r" , 3"s")|` , find the values of p,q,r and s.

If `|(2"a" + "b" , "c"),("d" , 3"a" - "b")|` = `|(4 , 3"a"),(7 , 6)|` , find the values of a , b , c and d.

If `|(3"a" + 2"b" , 2"a" - "b"),(4"p" - 3"q" , 2"p" + "q")|` = `|(12 , 1),(16 , 8)|` , find the values of a , b , p and q.

If A = `|(15,7),(13,8)|` and B = `|(16 , 12),(27,11)|` , find matrix X such that A + X

If A = `|(15,7),(13,8)|` and B = `|(16,12),(27,11)|`, find matrix X such that 2A - X = B.

If P = `|(14 , 17),(13,1)|` and Q = `|(2 , 1),(3 , -3)|` , find matrix M such that P - M = 3Q

#### Chapter 11: Matrices Exercise Exercise 11.2 solutions [Page 0]

Evaluate the following :

`|(-2 , 3),(-1 , 4)| |(6 , 4),(3 ,- 1)|`

Evaluate the following:

`|(3 , 2)| |(-1) , (3)|`

Evaluate the following :

`|(2 , -5),(0 , -3)| |(1 , -1),(3 , 2)|`

Evaluate the following :

`|(1 , 1),(2 , 3)| |(2 , 1),(1 , 4)|`

Evaluate the following :

`|(2 , 3),(-4 , 0)| |(3 , -2),(-1 , 4)|`

Evaluate the following :

`|(2,1) ,(3,2),(1 , 1)| |(1 , -2 , 1),(2 , 1 , 3)|`

Evaluate the following :

`|(0 , 1),(-1 , 2),(-2 , 0)| |(0 , -4 , 0),(3 , 0 , -1)|`

Evaluate the following :

`|(6 , 1),(3 , 1),(2 , 4)| |(1 , -2 , 1),(2 , 1 , 3)|`

Evaluate the following :

`|(0 , 1 , 0),(2 , 0 , -3),(1 , 0 , -2)| |(1 , -2),(3 , 4),(0 , 0)|`

If A = `|(1,3),(3,2)|` and B = `|(-2,3),(-4,1)|` find AB

If A = `|(1,3),(3,2)|` and B = `|(-2 , 3),(-4 , 1)|` find BA

Let A be a 2 x 2 matrix and let I be an identity matrix of the order 2 x 2. Prove that AI = IA = A.

If P = `|(1 , 2),(2 , 1)|` and Q = `|(2 , 1),(1 , 2)|` find P (QP).

If P =`|(1 , 2),(3 , 4)|` , Q = `|(5 , 1),(7 , 4)|` and R = `|(2 , 1),(4 , 2)|` find the value of P(Q + R)

If P =`|(1 , 2),(3 , 4)|` , Q = `|(5 , 1),(7 , 4)|` and R = `|(2 , 1),(4 , 2)|` find the value of (R + Q)P

If X = `|(1 , -2),(1 , 3)|` , Y = `|(-3 , 0),(4 , 1)|` and Z = `|(5 , -1),(3 , 2)|` , prove that X (Y + Z) = XY + XZ

If A = `|(3,-2),(-1 , 4)|` , B = `|(2"a"),(1)|` , C = `|(-4),(5)|` , D = `|(2),("b")|` and AB + 2C = 4D then find the values of a and b.

Let A = `|(3 , 2),(0 ,5)|` and B = `|(1 ,0),(1 ,2)|` , find (i) (A + B)(A - B) (ii) A^{2} - B^{2} . Is (i) equal to (ii) ?

Find X and Y , if `|(1,2),(2 , -3)| |(x),(y)| = |(-1) , (12)|`

## Chapter 11: Matrices

#### Frank Frank Class 10 Mathematics Part 2

#### Textbook solutions for Class 10

## Frank solutions for Class 10 Mathematics chapter 11 - Matrices

Frank solutions for Class 10 Maths chapter 11 (Matrices) include all questions with solution and detail explanation. This will clear students doubts about any question and improve application skills while preparing for board exams. The detailed, step-by-step solutions will help you understand the concepts better and clear your confusions, if any. Shaalaa.com has the CISCE Frank Class 10 Mathematics Part 2 solutions in a manner that help students grasp basic concepts better and faster.

Further, we at Shaalaa.com provide such solutions so that students can prepare for written exams. Frank textbook solutions can be a core help for self-study and acts as a perfect self-help guidance for students.

Concepts covered in Class 10 Mathematics chapter 11 Matrices are Introduction to Matrices, Addition and Subtraction of Matrices, Multiplication of Matrix, Matrices Examples.

Using Frank Class 10 solutions Matrices exercise by students are an easy way to prepare for the exams, as they involve solutions arranged chapter-wise also page wise. The questions involved in Frank Solutions are important questions that can be asked in the final exam. Maximum students of CISCE Class 10 prefer Frank Textbook Solutions to score more in exam.

Get the free view of chapter 11 Matrices Class 10 extra questions for Maths and can use Shaalaa.com to keep it handy for your exam preparation