BE Biotechnology Semester 3 (SE Second Year)University of Mumbai

View all notifications

Applied Mathematics 3 Semester 3 (SE Second Year) BE Biotechnology University of Mumbai Topics and Syllabus

Create free account

      Forgot password?
CBCGS [2017 - current]
CBGS [2013 - 2016]
Old [2000 - 2012]

Topics with syllabus and resources

100.00 Module 1 The Laplace Transform
  • The Laplace transform:- Definition and properties (without proofs); all standard transform methods for elementary functions including hyperbolic functions; Heaviside unit step function, Dirac delta function; the error function; evaluation of integrals using Laplace transforms; inverse Laplace transforms using partial fractions and H(t-a); convolution (no proof).
200.00 Module 2 Matrices
  1. Matrices:-
  • Eigenvalues and eigenspaces of 2x2 and 3x3 matrices;
  • existence of a basis and finding the dimension of the eigenspace (no proofs);
  • nondiagonalisable matrices; minimal polynomial;
  • Cayley - Hamilton theorem (no proof); quadratic forms;
  • orthogonal and congruent reduction of a quadratic form in 2 or 3 variables; rank, index, signature; definite and indefinite forms.
300.00 Module 3 Complex Analysis
  1. Complex analysis:-
  • Cauchy-Riemann equations (only in Cartesian coordinates) for an analytic function (no proof);
  • harmonic function;
  • Laplace’s equation;
  • harmonic conjugates and orthogonal trajectories (Cartesian coordinates); to find f(z) when u+v or u - v are given;
  • Milne-Thomson method; cross-ratio (no proofs);
  • conformal mappings; images of straight lines and circles.
400.00 Module 4 Cauchy‚ÄôS Formula and Theorem
  • Complex Integration Cauchy’s integral formula; poles and residues;
  • Cauchy’s residue theorem;
  • applications to evaluate real integrals of trigonometric functions;
  • integrals in the upper half plane; the argument principle.
500.00 Module 5 Statistics
  1. Statistics:
  • (No theory questions expected in this module) Mean, median, variance, standard deviation;
  • binomial, Poisson and normal distributions;
  • correlation and regression between 2 variables.
600.00 Module 6 Optimization
  1. Non-linear programming:-
  • Lagrange multiplier method for 2 or 3 variables with at most 2 constraints;
  • conditions on the Hessian matrix (no proof);
  • Kuhn-Tucker conditions with at most 2 constraints.
View in app×