# Mathematics Delhi Set 1 2013-2014 Science (English Medium) Class 12 Question Paper Solution

Mathematics [Delhi Set 1]
Date: March 2014

 1

Let * be a binary operation, on the set of all non-zero real numbers, given by a** b = (ab)/5 for all a,b∈ R-{0} that 2*(x*5)=10

Concept: Concept of Binary Operations
Chapter: [0.01] Relations and Functions
 2

If sin (sin^(−1)(1/5)+cos^(−1) x)=1, then find the value of x.

Concept: Properties of Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
 3

if 2[[3,4],[5,x]]+[[1,y],[0,1]]=[[7,0],[10,5]] , find (xy).

Concept: Equality of Matrices
Chapter: [0.03] Matrices
 4

Solve the following matrix equation for x: [x 1] [[1,0],[−2,0]]=0

Concept: Algebraic Operations on Matrices - Addition of Matrices
Chapter: [0.03] Matrices
 5

If |[2x,5],[8,x]|=|[6,-2],[7,3]|, write the value of x.

Concept: Applications of Determinants and Matrices
Chapter: [0.04] Determinants
 6

Write the antiderivative of (3sqrtx+1/sqrtx).

Concept: Integration as an Inverse Process of Differentiation
Chapter: [0.07] Integrals
 7

Evaluate : int_0^3dx/(9+x^2)

Concept: Evaluation of Simple Integrals of the Following Types and Problems
Chapter: [0.07] Integrals
 8

Find the projection of the vector hati+3hatj+7hatk  on the vector 2hati-3hatj+6hatk

Concept: Product of Two Vectors - Scalar (Or Dot) Product of Two Vectors
Chapter: [0.1] Vectors
 9

If veca  and vecb are two unit vectors such that veca+vecb is also a  unit vector, then find the angle between veca and vecb

Concept: Product of Two Vectors - Scalar (Or Dot) Product of Two Vectors
Chapter: [0.1] Vectors
 10

Write the vector equation of the plane, passing through the point (a, b, c) and parallel to the plane vec r.(hati+hatj+hatk)=2

Concept: Vector and Cartesian Equation of a Plane
Chapter: [0.11] Three - Dimensional Geometry
 11

Let A = {1, 2, 3,......, 9} and R be the relation in A × A defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in A × A. Prove that R is an equivalence relation. Also, obtain the equivalence class [(2, 5)].

Concept: Types of Relations
Chapter: [0.01] Relations and Functions
 12 | Attempt any one of the following :
 12.1

Prove that cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4)

Concept: Properties of Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
 12.2

Prove that 2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4

Concept: Properties of Inverse Trigonometric Functions
Chapter: [0.02] Inverse Trigonometric Functions
 13

Using properties of determinants, prove that |[2y,y-z-x,2y],[2z,2z,z-x-y],[x-y-z,2x,2x]|=(x+y+z)^3

Concept: Properties of Determinants
Chapter: [0.04] Determinants
 14

Differentiate tan^(-1)(sqrt(1-x^2)/x) with respect to cos^(-1)(2xsqrt(1-x^2)) ,when x!=0

Concept: Derivatives of Inverse Trigonometric Functions
Chapter: [0.05] Continuity and Differentiability
 15

If y = xx, prove that (d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.

Concept: Simple Problems on Applications of Derivatives
Chapter: [0.06] Applications of Derivatives
 16 | Attempt any one of following
 16.1

Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is

(a) strictly increasing

(b) strictly decreasing

Concept: Increasing and Decreasing Functions
Chapter: [0.06] Applications of Derivatives
 16.2

Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.

Concept: Tangents and Normals
Chapter: [0.06] Applications of Derivatives
 17 | Attempt any one of following
 17.1

Evaluate : ∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx

Concept: Integration as an Inverse Process of Differentiation
Chapter: [0.07] Integrals
 17.2

Evaluate : int(x-3)sqrt(x^2+3x-18)  dx

Concept: Methods of Integration: Integration by Substitution
Chapter: [0.07] Integrals
 18

Find the particular solution of the differential equation  e^xsqrt(1-y^2)dx+y/xdy=0 , given that y=1 when x=0

Concept: General and Particular Solutions of a Differential Equation
Chapter: [0.09] Differential Equations
 19

Solve the following differential equation: (x^2-1)dy/dx+2xy=2/(x^2-1)

Concept: Solutions of Linear Differential Equation
Chapter: [0.09] Differential Equations
 20 | Attempt any one of following
 20.1

Prove that, for any three vector veca,vecb,vecc [vec a+vec b,vec b+vec c,vecc+veca]=2[veca vecb vecc]

Concept: Scalar Triple Product of Vectors
Chapter: [0.1] Vectors
 20.2

Vectors veca,vecb and vecc  are such that veca+vecb+vecc=0 and |veca| =3,|vecb|=5 and |vecc|=7  Find the angle between veca and vecb

Concept: Product of Two Vectors - Scalar (Or Dot) Product of Two Vectors
Chapter: [0.1] Vectors
 21

Show that the lines (x+1)/3=(y+3)/5=(z+5)/7 and (x−2)/1=(y−4)/3=(z−6)/5 intersect. Also find their point of intersection

Concept: Three - Dimensional Geometry Examples and Solutions
Chapter: [0.11] Three - Dimensional Geometry
 22

Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls? Give that
(i) the youngest is a girl.
(ii) at least one is a girl.

Concept: Conditional Probability
Chapter: [0.13] Probability
 23

Two schools P and Q want to award their selected students on the values of discipline, politeness and punctuality. The school P wants to award Rs x each, Rs y each and Rs z each for the three respective values to its 3, 2 and 1 students with a total award money of Rs 1,000. School Q wants to spend Rs 1,500 to award its 4, 1 and 3 students on the respective values (by giving the same award money for the three values as before). If the total amount of awards for one prize on each value is Rs 600, using matrices, find the award money for each value.
Apart from the above three values, suggest one more value for awards.

Concept: Invertible Matrices
Chapter: [0.03] Matrices
 24

Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is cos^(-1)(1/sqrt3)

Concept: Simple Problems on Applications of Derivatives
Chapter: [0.06] Applications of Derivatives
 25

Evaluate :int_(pi/6)^(pi/3) dx/(1+sqrtcotx)

Concept: Integration Using Trigonometric Identities
Chapter: [0.07] Integrals
 26

Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32.

Concept: Area Under Simple Curves
Chapter: [0.08] Applications of the Integrals
 27 | Attempt any one of following
 27.1

Find the distance between the point (7, 2, 4) and the plane determined by the points A(2, 5, −3), B(−2, −3, 5) and C(5, 3, −3).

Concept: Distance of a Point from a Plane
Chapter: [0.11] Three - Dimensional Geometry
 27.2

Find the distance of the point (−1, −5, −10) from the point of intersection of the line vecr=2hati-hatj+2hatk+lambda(3hati+4hatj+2hatk)  and the plane vec r (hati-hatj+hatk)=5

Concept: Three - Dimensional Geometry Examples and Solutions
Chapter: [0.11] Three - Dimensional Geometry
 28

A dealer in rural area wishes to purchase a number of sewing machines. He has only Rs 5,760 to invest and has space for at most 20 items for storage. An electronic sewing machine cost him Rs 360 and a manually operated sewing machine Rs 240. He can sell an electronic sewing machine at a profit of Rs 22 and a manually operated sewing machine at a profit of Rs 18. Assuming that he can sell all the items that he can buy, how should he invest his money in order to maximize his profit? Make it as a LPP and solve it graphically.

Concept: Graphical Method of Solving Linear Programming Problems
Chapter: [0.12] Linear Programming
 29 | Attempt any one of following
 29.1

A card from a pack of 52 playing cards is lost. From the remaining cards of the pack three cards are drawn at random (without replacement) and are found to be all spades. Find the probability of the lost card being a spade.

Concept: Independent Events
Chapter: [0.13] Probability
 29.2

From a lot of 15 bulbs which include 5 defectives, a sample of 4 bulbs is drawn one by one with replacement. Find the probability distribution of number of defective bulbs. Hence find the mean of the distribution.

Concept: Random Variables and Its Probability Distributions
Chapter: [0.13] Probability

#### Request Question Paper

If you dont find a question paper, kindly write to us

View All Requests

#### Submit Question Paper

Help us maintain new question papers on Shaalaa.com, so we can continue to help students

only jpg, png and pdf files

## CBSE previous year question papers Class 12 Mathematics with solutions 2013 - 2014

CBSE Class 12 Maths question paper solution is key to score more marks in final exams. Students who have used our past year paper solution have significantly improved in speed and boosted their confidence to solve any question in the examination. Our CBSE Class 12 Maths question paper 2014 serve as a catalyst to prepare for your Mathematics board examination.
Previous year Question paper for CBSE Class 12 Maths-2014 is solved by experts. Solved question papers gives you the chance to check yourself after your mock test.
By referring the question paper Solutions for Mathematics, you can scale your preparation level and work on your weak areas. It will also help the candidates in developing the time-management skills. Practice makes perfect, and there is no better way to practice than to attempt previous year question paper solutions of CBSE Class 12.

How CBSE Class 12 Question Paper solutions Help Students ?
• Question paper solutions for Mathematics will helps students to prepare for exam.
• Question paper with answer will boost students confidence in exam time and also give you an idea About the important questions and topics to be prepared for the board exam.
• For finding solution of question papers no need to refer so multiple sources like textbook or guides.