Advertisement Remove all ads

X3 Ex - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

x3 e

Advertisement Remove all ads

Solution

\[\text{ Let } u = x^3 ; v = e^x \]
\[\text{ Then }, u' = 3 x^2 ; v' = e^x \]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left( x^3 e^x \right) = x^3 e^x + e^x \left( 3 x^2 \right)\]
\[ = x^2 e^x \left( x + 3 \right)\]

Concept: The Concept of Derivative - Algebra of Derivative of Functions
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 30 Derivatives
Exercise 30.4 | Q 2 | Page 39

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×