Advertisement Remove all ads

X2 Ex Log X - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

x2 ex log 

Advertisement Remove all ads

Solution

\[\text{ Let } u = x^2 ; v = e^x ; w = \log x\]
\[\text{ Then }, u' = 2x; v' = e^x , w = \frac{1}{x}\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uvw \right) = u'vw + + uv'w + uvw'\]
\[\frac{d}{dx}\left( x^2 e^x \log x \right) = 2x e^x \log x + x^2 e^x \log x + x^2 e^x \frac{1}{x}\]
\[ = 2x e^x \log x + x^2 e^x \log x + x e^x \]
\[ = x e^x \left( 2 \log x + x \log x + 1 \right)\]

Concept: The Concept of Derivative - Algebra of Derivative of Functions
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 30 Derivatives
Exercise 30.4 | Q 3 | Page 39

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×