# ∫ X √ X 2 + X + 1 D X - Mathematics

Sum
$\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }$

#### Solution

   \text{ Let I } = ∫   { x   dx}/{\sqrt{x^2 + x + 1}}
$\text{ Consider, }$
$x = A \frac{d}{dx} \left( x^2 + x + 1 \right) + B$
$\Rightarrow x = A \left( 2x + 1 \right) + B$
$\Rightarrow x = \left( 2A \right) x + A + B$
$\text{Equating Coefficient of like terms}$
$2A = 1$
$\Rightarrow A = \frac{1}{2}$
$\text{ And }$
$A + B = 0$
$\Rightarrow \frac{1}{2} + B = 0$
$\Rightarrow B = - \frac{1}{2}$
$\therefore I = \int\frac{\left( \frac{1}{2} \left( 2x + 1 \right) - \frac{1}{2} \right)}{\sqrt{x^2 + x + 1}} dx$
$= \frac{1}{2}\int\left( \frac{2x + 1}{\sqrt{x^2 + x + 1}} \right)dx - \frac{1}{2}\int\frac{dx}{\sqrt{x^2 + x + \frac{1}{4} - \frac{1}{4} + 1}}$
$\text{ Putting x }^2 + x + 1 = t$
$\Rightarrow \left( 2x + 1 \right) dx = dt$
$\text{ Then, }$
$I = \frac{1}{2}\int\frac{dt}{\sqrt{t}} - \frac{1}{2}\int\frac{dx}{\sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}}$
$= \frac{1}{2}\int t^{- \frac{1}{2}} dt - \frac{1}{2} \text{ log }\left| x + \frac{1}{2} + \sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \right| + C$
$= \frac{1}{2}\left| \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right| - \frac{1}{2} \text{ log }\left| x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| + C$
$= \sqrt{t} - \frac{1}{2} \text{ log }\left| x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| + C$
$= \sqrt{x^2 + x + 1} - \frac{1}{2} \text{ log }\left| x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| + C$

Concept: Indefinite Integral Problems
Is there an error in this question or solution?

#### APPEARS IN

RD Sharma Class 12 Maths
Chapter 19 Indefinite Integrals
Exercise 19.21 | Q 10 | Page 110