Advertisement Remove all ads

X + Cos X Tan X - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

\[\frac{x + \cos x}{\tan x}\] 

Advertisement Remove all ads

Solution

\[\text{ Let } u = x + \cos x; v = \tan x\]
\[\text{ Then }, u' = 1 - \sin x; v' = \sec^2 x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{x + \cos x}{\tan x} \right) = \frac{\tan x\left( 1 - \sin x \right) - \left( x + \cos x \right) \sec^2 x}{\tan^2 x}\]
\[\]

Concept: The Concept of Derivative - Algebra of Derivative of Functions
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 30 Derivatives
Exercise 30.5 | Q 27 | Page 44

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×