Advertisement Remove all ads

∫ x 3 ( log x ) 2 dx - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum
\[\int x^3 \left( \log x \right)^2\text{  dx }\]
Advertisement Remove all ads

Solution

\[\int {x^3}_{II} \cdot \left( \log_I x \right)^2 \cdot dx\]
\[ = \left( \log x^2 \right)\int x^3 dx - \int\frac{2 \log x}{x} \times \frac{x^4}{4} \text{  dx} \]
\[ = \left( \log x \right)^2 \times \frac{x^4}{4} - \frac{1}{2}\int \log_I x  \cdot {x^3}_{II} \text{  dx }\]
\[ = \left( \log x \right)^2 \times \frac{x^4}{4} - \frac{1}{2}\left[ \log x\int x^3 dx - \int\left\{ \frac{d}{dx}\left( \log x \right)\int x^3 dx \right\}dx \right]\]
\[ = \left( \log x \right)^2 \times \frac{x^4}{4} - \frac{1}{2} \left[ \log x \cdot \frac{x^4}{4} - \int\frac{1}{x} \times \frac{x^4}{4}dx \right]\]
\[ = \left( \log x \right)^2 \times \frac{x^4}{4} - \frac{1}{2} \left[ \log x \cdot \frac{x^4}{4} - \frac{1}{4}\int x^3 dx \right]\]
\[ = \left( \log x \right)^2 \times \frac{x^4}{4} - \frac{1}{2} \left[ \log x \cdot \frac{x^4}{4} - \frac{x^4}{16} \right] + C\]
\[ = \left( \log x \right)^2 \times \frac{x^4}{4} - \frac{\log x \cdot x^4}{8} + \frac{x^4}{32} + C\]

Concept: Indefinite Integral Problems
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 12 Maths
Chapter 19 Indefinite Integrals
Revision Excercise | Q 100 | Page 204

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×