\[x^2 - 4x + 7 = 0\]
Advertisement Remove all ads
Solution
We have:
\[x^2 - 4x + 7 = 0\]
\[ \Rightarrow x^2 - 4x + 4 + 3 = 0\]
\[ \Rightarrow x^2 - 2 \times x \times 2 + 2^2 - (\sqrt{3}i )^2 = 0\]
\[ \Rightarrow (x - 2 )^2 - (\sqrt{3}i )^2 = 0\]
\[ \Rightarrow (x - 2 + \sqrt{3}i) (x - 2 - \sqrt{3}i) = 0\]
\[\Rightarrow (x - 2 + \sqrt{3}i) = 0\] or, \[(x - 2 - \sqrt{3}i) = 0\]
\[\Rightarrow x = 2 - \sqrt{3}i\] or, \[x = 2 + \sqrt{3}i\]
Hence, the roots of the equation are \[2 \pm i\sqrt{3}\] .
Concept: Quadratic Equations
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads