Advertisement Remove all ads

X 2 − 1 X - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

\[\frac{x^2 - 1}{x}\]

Advertisement Remove all ads

Solution

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{(x + h )^2 - 1}{x + h} - \frac{x^2 - 1}{x}}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{x^2 + 2xh + h^2 - 1}{x + h} - \frac{x^2 - 1}{x}}{h}\]
\[ = \lim_{h \to 0} \frac{x^3 + 2 x^2 h + h^2 x - x - x^3 - x^2 h + x + h}{xh(x + h)}\]
\[ = \lim_{h \to 0} \frac{x^2 h + h^2 x + h}{x(x + h)}\]
\[ = \lim_{h \to 0} \frac{h( x^2 + hx + 1)}{xh(x + h)}\]
\[ = \lim_{h \to 0} \frac{x^2 + hx + 1}{x(x + h)}\]
\[ = \frac{x^2 + 1}{x^2}\]

Concept: The Concept of Derivative - Algebra of Derivative of Functions
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 30 Derivatives
Exercise 30.2 | Q 1.05 | Page 25

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×