Advertisement Remove all ads

( X + 1 X ) ( √ X + 1 √ X ) - Mathematics

\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 

Advertisement Remove all ads

Solution

\[\frac{d}{dx}\left[ \left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right) \right]\]
\[ = \frac{d}{dx}\left[ \left( x + x^{- 1} \right)\left( x^\frac{1}{2} + x^\frac{- 1}{2} \right) \right]\]
\[ = \frac{d}{dx}\left( x^\frac{3}{2} + x^\frac{1}{2} + x^\frac{- 1}{2} + x^\frac{- 3}{2} \right)\]
\[ = \frac{d}{dx}\left( x^\frac{3}{2} \right) + \frac{d}{dx}\left( x^\frac{1}{2} \right) + \frac{d}{dx}\left( x^\frac{- 1}{2} \right) + \frac{d}{dx}\left( x^\frac{- 3}{2} \right)\]
\[ = \frac{3}{2} x^\frac{1}{2} + \frac{1}{2} x^\frac{- 1}{2} - \frac{1}{2} x^\frac{- 3}{2} - \frac{3}{2} x^\frac{- 5}{2} \]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 30 Derivatives
Exercise 30.3 | Q 7 | Page 34
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×