Advertisement Remove all ads

Write the Variance of First N Natural Numbers. - Mathematics

Write the variance of first n natural numbers.

 
Advertisement Remove all ads

Solution

​Sum of first n natural numbers 

\[= \frac{n\left( n + 1 \right)}{2}\]
Mean, \[\bar{X} = \frac{\text{ Sum of all the observations} }{\text{ Total number of observations } }\]
\[= \frac{\frac{n\left( n + 1 \right)}{2}}{n} = \frac{n + 1}{2}\]

\[\therefore \sigma^2 = \frac{\sum \left( x_i - \bar{X} \right)^2}{n} = \frac{\sum \left( x_i - \frac{n + 1}{2} \right)^2}{n}\]

\[ = \frac{1}{n}\sum \left[ {x_i}^2 - x_i \left( n + 1 \right) + \left( \frac{n + 1}{2} \right)^2 \right]\]

\[ = \frac{n\left( n + 1 \right)\left( 2n + 1 \right)}{6n} - \left[ \frac{n\left( n + 1 \right)}{2} \right]\left( \frac{n + 1}{n} \right) + \frac{\left( n + 1 \right)^2}{4n} \times n\]

\[ = \frac{\left( n + 1 \right)\left( 2n + 1 \right)}{6} - \frac{\left( n + 1 \right)^2}{2} + \frac{\left( n + 1 \right)^2}{4}\]

\[ = \frac{\left( n + 1 \right)\left( n - 1 \right)}{12} = \frac{\left( n^2 - 1 \right)}{12}\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 32 Statistics
Q 1 | Page 49
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×