Karnataka Board PUCPUC Science 2nd PUC Class 12

Write a Value of ∫ E a X Sin B X D X - Mathematics

Advertisements
Advertisements
Sum

Write a value of\[\int e^{ax} \sin\ bx\ dx\]

Advertisements

Solution

\[\text{ Let I }= \int e^{ax} . \sin bx\ dx\]
\[ = \sin bx\int e^{ax}\text{  dx }- \int\left\{ \frac{d}{dx}\left( \sin bx \right)\int e^{ax} dx \right\}dx\]
\[ = \sin bx \times \frac{e^{ax}}{a} - \int\cos bx \times b . \frac{e^{ax}}{a}\]
\[ = \sin bx \times \frac{e^{ax}}{a} - \frac{b}{a}\int e^{ax} . \cos bx\ dx \]
\[ = \sin bx \times \frac{e^{ax}}{a} - \frac{b}{a} I_1 . . . \left( 1 \right)\]
\[ \therefore I_1 = \int e^{ax} \times \cos bxdx\]
\[ = \cos bx\int e^{ax} dx - \int\left\{ \frac{d}{dx}\left( \cos bx \right)\int e^{ax} dx \right\}dx\]
\[ = \cos bx \times \frac{e^{ax}}{a} + \int  b . \sin bx \times \frac{e^{ax}}{a}dx\]
\[ = \cos bx . \frac{e^{ax}}{a} + \frac{b}{a}I . . . . \left( 2 \right)\]
\[\text{ From }\left( 1 \right) \text{ and}\ \left( 2 \right)\]
\[ \therefore I = \sin bx . \frac{e^{ax}}{a} - \frac{b}{a} \left\{ \cos bx . \frac{e^{ax}}{a} + \frac{b}{a}I \right\}\]
\[ \Rightarrow I = \sin bx . \frac{e^{ax}}{a} - \frac{b}{a^2} \cos bx \text{ e}^{ax} - \frac{b^2}{a^2}I\]
\[ \Rightarrow I + \frac{b^2}{a^2}I = \sin bx . \frac{e^{ax}}{a} - \frac{b \cos bx \text{ e}^{ax}}{a^2}\]
\[ \Rightarrow \left( a^2 + b^2 \right)I = \left( a \sin bx - b\cos bx \right) e^{ax} \]
\[ \Rightarrow I = \frac{\left( a \sin bx - b\cos bx \right) e^{ax}}{a^2 + b^2} + C\]

  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Very Short Answers [Page 197]

APPEARS IN

RD Sharma Class 12 Maths
Chapter 19 Indefinite Integrals
Very Short Answers | Q 31 | Page 197

RELATED QUESTIONS

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Find : `int(x+3)sqrt(3-4x-x^2dx)`


Find `intsqrtx/sqrt(a^3-x^3)dx`


Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`xsqrt(1+ 2x^2)`


Integrate the functions:

`(x^3 - 1)^(1/3) x^5`


Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

sec2(7 – 4x)


Integrate the functions:

`(sin^(-1) x)/(sqrt(1-x^2))`


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions in `1/(1 - tan x)`


Evaluate : `∫1/(3+2sinx+cosx)dx`


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


Evaluate: `int (2y^2)/(y^2 + 4)dx`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int\sqrt{x - x^2} dx\]

\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

\[\int x \sin^3 x\ dx\]

Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Integrate the following w.r.t. x : `3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`


Evaluate the following integrals : tan2x dx


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`


Evaluate the following : `int (logx)2.dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


Evaluate: ∫ |x| dx if x < 0


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


Evaluate: `int log ("x"^2 + "x")` dx


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int 1/(cos x - sin x)` dx = _______________


`int x^2/sqrt(1 - x^6)` dx = ________________


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


`int (log x)/(log ex)^2` dx = _________


`int sqrt(1 + sin2x)  "d"x`


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int x^x (1 + logx)  "d"x`


`int x/(x + 2)  "d"x`


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


`int(log(logx) + 1/(logx)^2)dx` = ______.


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


The value of `intsinx/(sinx - cosx)dx` equals ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


Write `int cotx  dx`.


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluate the following

`int1/(x^2 +4x-5)dx`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


`int "cosec"^4x  dx` = ______.


Evaluate:

`int sin^2(x/2)dx`


`int x^2/sqrt(1 - x^6)dx` = ______.


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


The value of `int dx/(sqrt(1 - x))` is ______.


Evaluate the following:

`int (1) / (x^2 + 4x - 5) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int1/(x(x-1))dx` 


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Share
Notifications



      Forgot password?
Use app×