Sum
Write a value of
\[\int e^{\text{ log sin x }}\text{ cos x}. \text{ dx}\]
Advertisement Remove all ads
Solution
Let I= elog sin x . cos x dx
\[\int\] sin x × cos x dx \[\left( \because e^{log \text{ a} }= a \right)\]
Let sin x = t
⇒ cos x dx = dt
⇒ cos x dx = dt
\[\therefore I\]\[\int\] t . dt
\[= \frac{t^2}{2} + C\]
\[ = \frac{\sin^2 x}{2} + C \left( \because t = \sin x \right)\]
Concept: Methods of Integration: Integration by Substitution
Is there an error in this question or solution?
APPEARS IN
Advertisement Remove all ads