Advertisement Remove all ads

Write the Value of D D X ( X | X | ) - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]

Advertisement Remove all ads

Solution

\[\text{ Case } 1:\]
\[x > 0\]
\[|x| = x\]
\[\text{ Thus, we have }:\]
\[\frac{d}{dx}\left( x|x| \right) = \frac{d}{dx}\left( x . x \right) = \frac{d}{dx}\left( x^2 \right) = 2x \left( 1 \right)\]
\[\text{ Case } 2:\]
\[x < 0\]
\[|x| = - x\]
\[\text{ Thus, we have }:\]
\[\frac{d}{dx}\left( x|x| \right) = \frac{d}{dx}\left( x . \left( - x \right) \right) = \frac{d}{dx}\left( - x^2 \right) = - 2x \left( 2 \right)\]
\[\text{ From } (1) \text{ and } (2), \text{ we have }:\]
\[\frac{d}{dx}\left( x|x| \right) = \binom{2x, if x > 0}{ - 2x, if x < 0}\]
\[\]

Concept: The Concept of Derivative - Algebra of Derivative of Functions
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 30 Derivatives
Q 5 | Page 47

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×