Advertisement Remove all ads

Write the Value of D D X ( Log | X | ) - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]

Advertisement Remove all ads

Solution

\[\text{ Case } 1: x>0\]
\[\left| x \right| = x . . . \left( 1 \right)\]
\[\frac{d}{dx}\left( \log \left| x \right| \right) = \log x\]
\[ = \frac{1}{x}\]
\[ = \frac{1}{\left| x \right|} (\text{ from } (1))\]
\[Case 2:x<0\]
\[\left| x \right| = - x . . . \left( 2 \right)\]
\[\frac{d}{dx}\left( \log \left| x \right| \right) = \log \left( - x \right)\]
\[ = \frac{1}{- x}\]
\[ = \frac{1}{\left| x \right|} (\text{ from } (2))\]
\[\text{ From case } (1) \text{ and case }(2),\]
\[\frac{d}{dx}\left( \log \left| x \right| \right) = \frac{1}{\left| x \right|}\]

Concept: The Concept of Derivative - Algebra of Derivative of Functions
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 30 Derivatives
Q 10 | Page 47

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×