Write the value of cos 1° + cos 2° + cos 3° + ... + cos 180°.
Advertisement Remove all ads
Solution
\[\cos1^\circ + \cos2^\circ + \cos3^\circ + . . . + \cos180^\circ\]
\[ = \cos1^\circ + \cos2^\circ + \cos3^\circ + . . . + \cos88^\circ + \cos89^\circ + \cos90^\circ + \cos\left( 180 - 89 \right)^\circ + \cos\left( 180 - 88 \right)^\circ + . . . + \cos\left( 180 - 1 \right)^\circ + \cos180^\circ \left[ \cos\left( 180^\circ - \theta \right) = - \cos \theta \right]\]
\[ = \cos1^\circ + \cos2^\circ + \cos3^\circ + . . . + \cos88^\circ + \cos89^\circ + \cos90^\circ - \cos89^\circ - \cos88^\circ - . . . - \cos1^\circ + \cos180^\circ\]
\[ = \cos90^\circ + \cos180^\circ\]
\[ = 0 - 1\]
\[ = - 1\]
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads