Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]
Advertisement Remove all ads
Solution
We know:
nCr \[-\]1 + nCr = n+1Cr
\[\text{Now, we have}: \]
\[ \sum^6_{r = 1} {}^{56 - r} C_3 + {}^{50} C_4 \]
\[ =^{55} C_3 +^{54} C_3 +^{53} C_3 +^{52} C_3 +^{51} C_3 +^{50} C_3 +^{50} C_4\]
\[ \sum^6_{r = 1} {}^{56 - r} C_3 + {}^{50} C_4 \]
\[ =^{55} C_3 +^{54} C_3 +^{53} C_3 +^{52} C_3 +^{51} C_3 +^{50} C_3 +^{50} C_4\]
\[=^{55} C_3 +^{54} C_3 +^{53} C_3 +^{52} C_3 +^{51} C_3 +^{51} C_4 \]
\[ =^{55} C_3 +^{54} C_3 +^{53} C_3 +^{52} C_3 +^{52} C_4 \]
\[ =^{55} C_3 +^{54} C_3 +^{53} C_3 +^{53} C_4 \]
\[ =^{55} C_3 +^{54} C_3 +^{54} C_4 \]
\[ =^{55} C_3 +^{55} C_4 \]
\[ =^{56} C_4 \]
\[ =^{55} C_3 +^{54} C_3 +^{53} C_3 +^{52} C_3 +^{52} C_4 \]
\[ =^{55} C_3 +^{54} C_3 +^{53} C_3 +^{53} C_4 \]
\[ =^{55} C_3 +^{54} C_3 +^{54} C_4 \]
\[ =^{55} C_3 +^{55} C_4 \]
\[ =^{56} C_4 \]
Concept: Factorial N (N!) Permutations and Combinations
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads