Question
Sum
Write the order and degree of the differential equation `((d^4"y")/(d"x"^4))^2 = [ "x" + ((d"y")/(d"x"))^2]^3`.
Solution
Since,
The given differential equation is
`((d^4"y")/(d"x"^4))^2 = [ "x" + ((d"y")/(d"x"))^2]^3`
`((d^4"y")/(d"x"^4))^2 = "x"^3 + ((d"y")/(d"x"))^6 + 3"x"^2 ((d"y")/(d"x"))^2 + 3"x" ((d"y")/(d"x"))^4`
The highest order derivative in the differential equation is `(d^4"y")/(d"x"^4)` ⇒ Order of the given differential equation is 4.
The highest power raised to `(d^4"y")/(d"x"^4)` is 2⇒ Degree of the given differential equation is 2.
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads