Advertisement Remove all ads

Write the Set of Values of X Satisfying the Inequations 5x + 2 < 3x + 8 and X + 2 X − 1 < 4 - Mathematics

Write the set of values of x satisfying the inequations 5x + 2 < 3x + 8 and \[\frac{x + 2}{x - 1} < 4\] 

Advertisement Remove all ads

Solution

\[\text{ We have }, \]
\[5x + 2 < 3x + 8 \text{ and } \frac{x + 2}{x - 1} < 4\]
\[ \Rightarrow 2x < 6 \text{ and } \frac{x + 2}{x - 1} - 4 < 0\]
\[ \Rightarrow x < 3 \text{ and } \frac{x + 2 - 4x + 4}{x - 1} < 0\]
\[ \Rightarrow x \in ( - \infty , 3) \text{ and } \frac{- 3x + 6}{x - 1} < 0\]
\[ \Rightarrow x \in ( - \infty , 3) \text{ and } \frac{- x + 2}{x - 1} < 0\]
\[\text{ For } \frac{- x + 2}{x - 1} < 0, \text{ critical points are 1 and } 2 . \]
\[ \Rightarrow x \in (2, \infty ) \cup ( - \infty , 1)\]
\[ \therefore x \in ( - \infty , 1) \cup (2, 3)\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 15 Linear Inequations
Q 8 | Page 31
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×