Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11
Advertisement Remove all ads

Write the Set of Values of a for Which the Equation √ 3 Sin X − Cos X = a Has No Solution. - Mathematics

Sum

Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.
Advertisement Remove all ads

Solution

Given:

\[\sqrt{3} \sin x - \cos x = a\]

\[ \Rightarrow \frac{\sqrt{3} \sin x - \cos x}{2} = \frac{a}{2}\]

\[ \Rightarrow \frac{\sqrt{3}}{2} \sin x - \frac{1}{2} \cos x = \frac{a}{2}\]

\[ \Rightarrow \cos 30^\circ \sin x - \sin 30^\circ \cos x = \frac{a}{2}\]

\[ \Rightarrow \sin ( x - 30^\circ) = \frac{a}{2}\]

\[ \Rightarrow x - 30^\circ = \sin^{- 1} \left( \frac{a}{2} \right)\]

\[ \Rightarrow x = \sin^{- 1} \left( \frac{a}{2} \right) + 30^\circ\]
If \[a = 2\] or \[a = 2\] , then the equation will possess a solution.
For no solution,
\[a \in ( - \infty , - 2) \cup (2, \infty )\].

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 11 Trigonometric equations
Q 4 | Page 26
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×