Advertisement Remove all ads

Write the principal value of tan^(-1)+cos^(-1)(-1/2) - Mathematics and Statistics

Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`

Advertisement Remove all ads

Solution

`Let tan^(-1)=y and cos^(-1)(-1/2)=z`

`tany=1=tan(pi/4) and cosz=-1/2=-cos(pi/3)=cos(pi-pi/3)=cos((2pi)/3)`

The ranges of principal value branch of tan−1 and cos−1 are `(-pi/2,pi/2)and[0,pi] ` respectively

`therefore tan^(-1)=pi/4 and cos^(-1)(-1/2)=2pi/3`

`therefore tan^(-1)(1)+cos^(-1)(-1/2)=pi/4+(2pi)/3=(11pi)/12`

 

Concept: Inverse Trigonometric Functions - Inverse Trigonometric Functions - Principal Value Branch
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×