Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11
Advertisement Remove all ads

Write the Number of Solutions of the Equation 4 Sin X − 3 Cos X = 7 - Mathematics

Sum

Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]

Advertisement Remove all ads

Solution

We have:
\[4 \sin x - 3 \cos x = 7\]
  ...(i)
The equation is of the form
\[a \sin x + b \cos x = c\], where
\[a = 4, b = - 3\] and \[c = 7\]
Now,
Let:
\[a = r \sin \alpha\] and \[a = r \sin \alpha\]
Thus, we have:
\[r = \sqrt{a^2 + b^2} = \sqrt{4^2 + 3^2} = 5\] and
\[\tan \alpha = \frac{- 4}{3} \Rightarrow \alpha = \tan^{- 1} \left( - \frac{4}{3} \right)\]
By putting \[a = 4 = r \sin \alpha\] and \[b = - 3 = r \cos \alpha\]in equation (i), we get:
\[r \sin\alpha \sin x + r \cos\alpha \cos x = 7\]

\[\Rightarrow r \cos (x - \alpha) = 7\]

\[ \Rightarrow 5 \cos \left[ x - \tan^{- 1} \left( \frac{- 4}{3} \right) \right] = 7\]

\[ \Rightarrow \cos \left[ x - \tan^{- 1} \left( \frac{- 4}{3} \right) \right] = \frac{7}{5}\]

The solution is not possible.
Hence, the given equation has no solution.

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 11 Trigonometric equations
Q 2 | Page 26
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×