Advertisement Remove all ads

Write Last Two Digits of the Number 3400. - Mathematics

Write last two digits of the number 3400.

 
Advertisement Remove all ads

Solution

\[3^{400} = \left( 9 \right)^{200} \]
\[ = \left( 10 - 1 \right)^{200} \]
\[ =^{200} C_0 \left( 10 \right)^{200} +^{200} C_1 \left( 10 \right)^{199} \left( - 1 \right)^1 + . . . . . +^{200} C_{198} \left( 10 \right)^2 \left( - 1 \right)^{198} +^{200} C_{199} \left( 10 \right)^1 \left( - 1 \right)^{199} +^{200} C_{200} \left( - 1 \right)^{200} \]
\[ = 100\left[ \left( 10 \right)^{198} +^{200} C_1 \left( 10 \right)^{197} \left( - 1 \right)^1 + . . . . . +^{200} C_{198} \left( - 1 \right)^{198} \right] + 200 \left( 10 \right)^1 \left( - 1 \right)^{199} + \left( - 1 \right)^{200} \]
\[ = 100\left[ \left( 10 \right)^{198} -^{200} C_1 \left( 10 \right)^{197} + . . . . . +^{200} C_{198} - 2\left( 10 \right) \right] + 1\]
\[ = 100(\text{ a natural number } ) + 1\]

Hence, last two digits of the number 3400 is 01.

 
Concept: Proof of Binomial Therom by Combination
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 18 Binomial Theorem
Q 14 | Page 45
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×