Write (i25)3 in polar form.
Advertisement Remove all ads
Solution
\[\left( i^{25} \right)^3 = i^{75} \]
\[ = i^{4 \times 18 + 3} \]
\[ = \left( i^4 \right)^{18} . i^3 \]
\[ = i^3 [ \because i^4 = 1]\]
\[ = - i [ \because i^3 = - i]\]
Let \[z = 0 - i\]
Then,
\[\left| z \right| = \sqrt{0^2 + \left( - 1 \right)^2} = 1\].
Let θ be the argument of z and α be the acute angle given by
\[\tan\alpha = \frac{\left| Im\left( z \right) \right|}{\left| Re\left( z \right) \right|}\]
Then,
\[\tan\alpha = \frac{1}{0} = \infty \]
\[ \Rightarrow \alpha = \frac{\pi}{2}\]
Clearly, z lies in fourth quadrant. So, arg(z) =
\[- \alpha = - \frac{\pi}{2}\].
∴ the polar form of z is \[\left| z \right|\left( \cos\theta + i\sin\theta \right) = \cos\left( - \frac{\pi}{2} \right) + i\sin\left( - \frac{\pi}{2} \right)\].
Thus, the polar form of (i25)3 is \[\cos\left( \frac{\pi}{2} \right) - i\sin\left( \frac{\pi}{2} \right)\].
Concept: Concept of Complex Numbers
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads