Advertisement Remove all ads

Write the Equation of the Directrix of the Parabola X2 − 4x − 8y + 12 = 0. - Mathematics

Write the equation of the directrix of the parabola x2 − 4x − 8y + 12 = 0. 

Advertisement Remove all ads

Solution

Given:
x2 − 4x − 8y + 12 = 0 

\[\Rightarrow \left( x - 2 \right)^2 - 4 - 8y + 12 = 0\]
\[ \Rightarrow \left( x - 2 \right)^2 = 8\left( y - 1 \right) \left( 1 \right)\]

Let Y = y−1, \[X = x - 2\] 

∴ From (1), we have: 

\[X^2 = 8Y\] 

Comparing with \[x^2 = 4ay\] 

\[a = 2\] 

Directrix = Y = −a
⇒ − 1 = −a
 ⇒y = −a + 1
     = −2 + 1
     = −1 

Therefore, the required equation of the directrix is \[y = - 1\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 25 Parabola
Exercise 25.2 | Q 3 | Page 28
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×