Advertisement Remove all ads

# Write the Area of the Triangle Formed by the Coordinate Axes and the Line (Sec θ − Tan θ) X + (Sec θ + Tan θ) Y = 2. - Mathematics

Answer in Brief

Write the area of the triangle formed by the coordinate axes and the line (sec θ − tan θ) x + (sec θ + tan θ) y = 2.

Advertisement Remove all ads

#### Solution

The point of intersection of the coordinate axes is (0, 0).
Let us find the intersection of the line (sec θ − tan θ) x + (sec θ + tan θ) y = 2 and the coordinate axis.
For x-axis:
y = 0, $x = \frac{2}{sec\theta - tan\theta}$

For y-axis:
x = 0,

$y = \frac{2}{sec\theta + tan\theta}$

Thus, the coordinates of the triangle formed by the coordinate axis and the line (sec θ − tan θ) x + (sec θ + tan θ) y = 2 are (0, 0), $\left( \frac{2}{sec\theta - tan\theta}, 0 \right)$ and $\left( 0, \frac{2}{sec\theta + tan\theta} \right)$.

Let A be the area of the required triangle..

$\therefore A = \frac{1}{2}\begin{vmatrix}0 & 0 & 1 \\ \frac{2}{\sec\theta - tan\theta} & 0 & 1 \\ 0 & \frac{2}{\sec\theta + tan\theta} & 1\end{vmatrix}$

$\Rightarrow A = \frac{1}{2} \times \frac{2}{\sec\theta - tan\theta} \times \frac{2}{\sec\theta + tan\theta}$

$\Rightarrow A = \frac{2}{\left( \sec\theta - tan\theta \right)\left( \sec\theta + tan\theta \right)} = \frac{2}{\left( \sec^2 \theta - \tan^2 \theta \right)} = 2$

Hence, the area of the triangle is 2 square units.

Concept: Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
Is there an error in this question or solution?
Advertisement Remove all ads

#### APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 23 The straight lines
Q 8 | Page 132
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications

Forgot password?