Advertisement Remove all ads

Write the Area of the Triangle Formed by the Coordinate Axes and the Line (Sec θ − Tan θ) X + (Sec θ + Tan θ) Y = 2. - Mathematics

Answer in Brief

Write the area of the triangle formed by the coordinate axes and the line (sec θ − tan θ) x + (sec θ + tan θ) y = 2.

Advertisement Remove all ads

Solution

The point of intersection of the coordinate axes is (0, 0).
Let us find the intersection of the line (sec θ − tan θ) x + (sec θ + tan θ) y = 2 and the coordinate axis.
For x-axis:
y = 0, $x = \frac{2}{sec\theta - tan\theta}$

For y-axis:
x = 0,

$y = \frac{2}{sec\theta + tan\theta}$

Thus, the coordinates of the triangle formed by the coordinate axis and the line (sec θ − tan θ) x + (sec θ + tan θ) y = 2 are (0, 0), $\left( \frac{2}{sec\theta - tan\theta}, 0 \right)$ and $\left( 0, \frac{2}{sec\theta + tan\theta} \right)$.

Let A be the area of the required triangle..

$\therefore A = \frac{1}{2}\begin{vmatrix}0 & 0 & 1 \\ \frac{2}{\sec\theta - tan\theta} & 0 & 1 \\ 0 & \frac{2}{\sec\theta + tan\theta} & 1\end{vmatrix}$

$\Rightarrow A = \frac{1}{2} \times \frac{2}{\sec\theta - tan\theta} \times \frac{2}{\sec\theta + tan\theta}$

$\Rightarrow A = \frac{2}{\left( \sec\theta - tan\theta \right)\left( \sec\theta + tan\theta \right)} = \frac{2}{\left( \sec^2 \theta - \tan^2 \theta \right)} = 2$

Hence, the area of the triangle is 2 square units.

Concept: Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 23 The straight lines
Q 8 | Page 132
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications

Forgot password?