Tamil Nadu Board of Secondary EducationHSC Science Class 12

Write a short note on the X-ray. - Physics

Advertisements
Advertisements
Answer in Brief

Write a short note on the X-ray.

Advertisements

Solution

It is produced when there is a sudden deceleration of high speed electrons at high- atomic number target, and also by electronic transitions among the innermost orbits of atoms. The wavelength range 10-13 m to 10-8 m and frequency range are 3 x 1021 Hz to 1 x 1016 Hz. X-rays have more penetrating power than ultraviolet radiation.

X-rays are used extensively in studying structures of inner atomic electron shells and crystal structures. It is used in detecting fractures, diseased organs, formation of bones and stones, observing the progress of healing bones. Further, in a finished metal product, it is used to detect faults, cracks, flaws and holes.

  Is there an error in this question or solution?
Chapter 5: Electromagnetic waves - Evaluation [Page 283]

APPEARS IN

Tamil Nadu Board Samacheer Kalvi Class 12th Physics Volume 1 and 2 Answers Guide
Chapter 5 Electromagnetic waves
Evaluation | Q III. 2. (b) | Page 283

RELATED QUESTIONS

Arrange the following electromagnetic wave in the order of their increasing wavelength:

(a) γ- rays

(b) Microwaves

(c) X-rays

(d) Radio waves


How is the speed of em-waves in vacuum determined by the electric and magnetic field?


Identify the electromagnetic waves whose wavelengths vary as:

(a) 10–12 m < λ < 10–8 m

(b) 10–3 m < λ < 10–1 m

Write one use for each.


What is the ratio of the speed of gamma rays to that of radio waves in a vacuum?


How are electric vector `(vec "E")`, magnetic vector `(vec "B")` and velocity vector `(vec "C")` oriented in an electromagnetic wave?


A plane electromagnetic wave is travelling through a medium along the +ve z-direction. Depict the electromagnetic wave showing the directions of the oscillating electric and magnetic fields.


Arrange the following electromagnetic waves in decreasing order of wavelength:

γ-rays, infrared rays, X-rays and microwaves.

A wire carries an alternating current i = i0 sin ωt. Is there an electric field in the vicinity of the wire?


A capacitor is connected to an alternating-current source. Is there a magnetic field between the plates?


Can an electromagnetic wave be polarised?


An electromagnetic wave going through vacuum is described by
E = E0 sin (kx − ωt); B = B0 sin (kx − ωt).
Which of the following equations is true?


Displacement current goes through the gap between the plates of a capacitor when the charge of the capacitor

(a) increases
(b) decreases
(c) does not change
(d) is zero


Speed of electromagnetic waves is the same


Which of the following have zero average value in a plane electromagnetic wave?
(a) Electric field
(b) Magnetic field
(c) Electric energy
(d) Magnetic energy


The energy contained in a small volume through which an electromagnetic wave is passing oscillates with


Consider the situation of the previous problem. Define displacement resistance Rd = V/idof the space between the plates, where V is the potential difference between the plates and id is the displacement current. Show that Rd varies with time as `R_d = R(e^(t"/"tau) - 1)` .


A laser beam has intensity 2.5 × 1014 W m−2. Find amplitudes of electric and magnetic fields in the beam.


The energy associated with light of which of the following colours is minimum : 


This is an example of step-up transformer .


Define frequency modulation and state any one advantage of frequency modulation (FM) over amplitude modulation (AM). 


State any one property which is common to all electromagnetic waves.


The energy levels of an atom of a certain element are shown in the given figure. Which one of the transitions A, B, C, D or E will result in the emission of photons of electromagnetic radiation of wavelength 618.75 nm? Support your answer with mathematical calculations.


The electric and magnetic fields, associated with an electromagnetic wave, propagating along negative X-axis can be represented by ______.


In an electromagnetic wave in free space the rms value of the electric field is 3 V m-1. The peak value of the magnetic field is ______.


Fraunhofer lines are an example of _______ spectrum.


Which of the following is an electromagnetic wave?


What are electromagnetic waves?


Write notes on Ampere-Maxwell law.


Write down Maxwell equations in integral form.


Discuss the source of electromagnetic waves.


Explain the types of absorption spectrum.


Consider a parallel plate capacitor whose plates are closely spaced. Let R be the radius of the plates and the current in the wire connected to the plates is 5 A, calculate the displacement current through the surface passing between the plates by directly calculating the rate of change of flux of electric field through the surface.


The electric field of a plane electromagnetic wave travelling in +ve z-direction is described by ______.


A man standing on the road has to hold his umbrella at 30° with the vertical to keep the rain away. He throws away the umbrella and starts, running at 10 km/h and finds raindrops hitting his head vertically. The speed of the raindrops with respect to the road is ______.


Which one of the following does not represent simple harmonic motion? Here y denotes the instantaneous displacement. Here, A and B are constants and co is the angular frequency.


A plane electromagnetic wave travels in free space along x-axis. At a particular point in space, the electric field along y-axis is 9.3 Vm−1. The magnetic induction (B) along z-axis is:


Dimensions of 1/(µOE0) is


An accelerate electron would produce.


Maxwell's equation describe the fundamental law of


Which of the following are not electromagnetic waves?


The sun delivers 103w/m2 of electromagnetic flux to the earth's surface. The total power that is incident on a roof of dimension 8m/10m will be


For which frequency of light, the eye is most sensitive?


Electromagnetic waves are produced by ______.


Which of the following type of radiations are radiated by an oscillating electric charge?


For a plane electromagnetic wave propagating in x-direction, which one of the following combinations gives the correct possible directions for electric field (E) and magnetic field (B) respectively?


For a plane electromagnetic wave propagating in the x-direction, which one of the following combinations gives the correct possible directions for the electric field (E) and magnetic field (B) respectively?


The source of electromagnetic waves can be a charge ______.

  1. moving with a constant velocity.
  2. moving in a circular orbit.
  3. at rest.
  4. falling in an electric field.

An EM wave of intensity I falls on a surface kept in vacuum and exerts radiation pressure p on it. Which of the following are true?

  1. Radiation pressure is `I/c` if the wave is totally absorbed.
  2. Radiation pressure is `I/c` if the wave is totally reflected.
  3. Radiation pressure is `(2I)/c` if the wave is totally reflected.
  4. Radiation pressure is in the range `I/c < p < (2I)/c` for real surfaces.

Show that the radiation pressure exerted by an EM wave of intensity I on a surface kept in vacuum is I/c.


Even though an electric field E exerts a force qE on a charged particle yet the electric field of an EM wave does not contribute to the radiation pressure (but transfers energy). Explain.


The intensity of the light from a bulb incident on a surface is 0.22 W/m2 . The amplitude of the magnetic field in this light-wave is ______× 10–9 T. 

(Given: Permittivity of vacuum ε0 = 8.85 × 10–12 C2 N–1 – m–2, speed of light in vacuum c = 3 × 108 ms-1)


A plane electromagnetic wave of frequency 500 MHz is travelling in a vacuum along a y-direction.

At a particular point in space and time, `vec"B"` = 8.0 × 10-8 `hat"Z"`T. The value of the electric field at this point is ______.

(speed of light = 3 × 108 ms-1)

`hat x, hat y, hat z` are unit vectors along x, y, and Z directions.


For an electromagnetic wave travelling in free space, the relation between average energy densities due to electric (Ue) and magnetic (Um) fields is ______.


The electric field in a plane electromagnetic wave is given by `vecE = 200cos[((0.5 xx 10^3)/m)x - (1.5 xx 10^11 "rad"/s xx t)]V/mhatj`. If the wave falls normally on a perfectly reflecting surface having an area of 100 cm2. If the radiation pressure exerted by the E.M. wave on the surface during a 10-minute exposure is `x/10^9 N/m^2`. Find the value of x.


A plane electromagnetic wave travels in free space along the x-direction. The electric field component of the wave at a particular point of space and time is E = 6 Vm-1 along the y-direction. Its corresponding magnetic field component, B would be ______.


The electric field in an electromagnetic wave is given by E = 56.5 sin ω(t - x/c)Nc-1. Find the intensity of the wave if it is propagating along x-axis in the free space.

(Given ε0 = 8.85 × 10-12 C2 N-1 m-2)


A plane electromagnetic wave with frequency of 30 MHz travels in free space. At particular point in space and time, electric field is 6 V/m. The magnetic field at this point will be x × 10-8 T. The value of x is ______.


An electromagnetic wave of frequency 3 GHz enters a dielectric medium of relative electric permittivity 2.25 from vacuum. The wavelength of this wave in that medium will be ______ × 10-2 cm. 


In a plane electromagnetic wave, the direction of electric field and magnetic field are represented by `hat"k"` and 2`hat"i" - 2hat"j"`, respectively. What is the unit vector along direction of propagation of the wave.


A 27 mW laser beam has a cross-sectional area of 10 mm2. The magnitude of the maximum electric field in this electromagnetic wave is given by:

[Given permittivity of space ∈0 = 9 × 10-12 SI units, Speed of light c = 3  108 m/s] 


Name the electromagnetic wave/radiation which is used to study crystal structure.


Share
Notifications



      Forgot password?
Use app×