Without Using Trigonometric Tables, Prove That: Cosec 80° − Sec 10° = 0 - Mathematics

Advertisements
Advertisements
Sum

Without using trigonometric tables, prove that:

cosec 80° − sec 10° = 0

Advertisements

Solution

LHS = cosec 80° − sec 10°

= `"cosec" (90^circ - 10^circ) - sec 10^circ`

= `sec 10^circ - sec 10^circ`

= 0

= RHS

Concept: Trigonometry
  Is there an error in this question or solution?
Chapter 7: Trigonometric Ratios of Complementary Angles - Exercises [Page 312]

APPEARS IN

RS Aggarwal Secondary School Class 10 Maths
Chapter 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 2.3 | Page 312

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Without using trigonometrical tables, evaluate:

`cosec^2 57^@ - tan^2 33^@ + cos 44^@ cosec 46^@ - sqrt2 cos 45^@ -  tan^2 60^@`


Without using trigonometric tables, evaluate 

`sin^2 34^@ + sin^2 56^@ + 2tan 18^@ tan 72^@ - cot^2 30^@`


Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(cosec A - sin A) (sec A - cos A)`=1/(tanA+cotA)` 

[Hint: Simplify LHS and RHS separately.] 


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`


Without using trigonometric tables, evaluate :
`sin 16^circ/cos 74^circ`


Without using trigonometric tables, evaluate :

`tan 27^circ/cot 63^circ`


Without using trigonometric tables, prove that:

tan 71° − cot 19° = 0


Without using trigonometric tables, prove that:

cosec272° − tan218° = 1


Without using trigonometric tables, prove that:

cos275° + cos215° = 1


Without using trigonometric tables, prove that:

sin248° + sin242° = 1


Without using trigonometric tables, prove that:

(sin72° + cos18°)(sin72° − cos18°) = 0


Prove that:

\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]


Prove that:

cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]


Prove that:

cos1° cos2° cos3° ... cos180° = 0


If A, B  and C are the angles of a  ΔABC, prove that tan `((C + "A")/2) = cot  B/2`


If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.  


If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.


Solve : Sin2θ - 3sin θ + 2 = 0 .


If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`


From the trigonometric table, write the values of cos 23°17'.


Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.


Using trigonometric table evaluate the following:
tan 25°45' + cot 45°25'.


Using trigonometric table evaluate the following:
cos 64°42' - sin 42°20'


Prove that:

`(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")` = sin A + cos A


If sin θ = 1, then the value of `1/2  sin(theta/2)`is ______.


Share
Notifications



      Forgot password?
Use app×