Sum
Without expanding, find the value of (2x − 1)4 + 4(2x − 1)3 (3 − 2x) + 6(2x − 1)2 (3 − 2x)2 + 4(2x − 1)1 (3 − 2x)3 + (3 − 2x)4
Advertisement Remove all ads
Solution
We notice that the coefficients 1, 4, 6, 4, 1 are the values of 4C0, 4C1, 4C2, 4C3, and 4C4 respectively.
Hence, the given expression can be written as:
4C0(2x − 1)4 + 4C1(2x − 1)3(3 − 2x) + 4C2(2x − 1)2(3 − 2x)2 + 4C3(2x − 1)(3 − 2x)3 + 4C4(3 − 2x)4
= [(2x − 1) + (3 − 2x)]4
= (2x − 1 + 3 − 2x)4
= (2)4
= 16
Concept: Binomial Theorem for Positive Integral Index
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads