What is the conjugate of 5+12i+5-12i5+12i-5-12i? - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?

Advertisement Remove all ads

Solution

Let z = `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i)) xx (sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) + sqrt(5 - 12i))`

= `(5 + 12i + 5 - 12i + 2 sqrt(25 + 144))/(5 + 12i - 5 + 12i)`

= `3/(2i)`

= `(3i)/(-2)`

= `0 - 3/2 i`

Therefore, the conjugate of z = `0 + 3/2 i`.

Concept: The Modulus and the Conjugate of a Complex Number
  Is there an error in this question or solution?

APPEARS IN

NCERT Mathematics Exemplar Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Solved Examples | Q 23 | Page 88

Video TutorialsVIEW ALL [1]

Share
Notifications

View all notifications


      Forgot password?
View in app×