What Are the Possible Expressions for the Dimensions of the Cuboids Whose Volumes Are Given Below? - Mathematics

Advertisements
Advertisements

What are the possible expressions for the dimensions of the cuboids whose volumes are given below?

Volume : 12ky2 + 8ky – 20k
Advertisements

Solution

Volume of cuboid = Length × Breadth × Height

The expression given for the volume of the cuboid has to be factorised. One of its factors will be its length, one will be its breadth, and one will be its height.

12ky2 8k– 204k(3y2 2– 5)

                            = 4k(3y2 5– 3– 5)

                            = 4k[y(35– 1(35)]

                            = 4k(35)(– 1)

Possible expression for length = 4k

Possible expression for breadth = (3y +5)

Possible expression for height = (y -1)

  Is there an error in this question or solution?
Chapter 2: Polynomials - Exercise 2.5 [Page 50]

APPEARS IN

NCERT Mathematics Class 9
Chapter 2 Polynomials
Exercise 2.5 | Q 16.2 | Page 50

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Expand following, using suitable identities :- (2x – y + z)2 


Write the following cube in expanded form:- (2a – 3b)3 


Evaluate the following using suitable identities:- (998)3 


Evaluate the following using identities:

117 x 83


Write in the expanded form:

`(2 + x - 2y)^2`


Simplify the expression: 

`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`


If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]


Evaluate of the following: 

`(10.4)^3`


Simplify of the following:

\[\left( \frac{x}{2} + \frac{y}{3} \right)^3 - \left( \frac{x}{2} - \frac{y}{3} \right)^3\]

Find the following product:

\[\left( \frac{3}{x} - 2 x^2 \right) \left( \frac{9}{x^2} + 4 x^4 - 6x \right)\]

If x = −2 and y = 1, by using an identity find the value of the following

\[\left( 5y + \frac{15}{y} \right) \left( 25 y^2 - 75 + \frac{225}{y^2} \right)\]

Find the following product:

(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)


If \[x + \frac{1}{x} = 3\]  then find the value of \[x^6 + \frac{1}{x^6}\].


If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] = 

 


If the volume of a cuboid is 3x2 − 27, then its possible dimensions are


75 × 75 + 2 × 75 × 25 + 25 × 25 is equal to


If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]


If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] = 


If  \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]


Evalute : `( 7/8x + 4/5y)^2`


If a + `1/a`= 6 and  a ≠ 0 find :
(i) `a - 1/a   (ii)  a^2 - 1/a^2`


Use the direct method to evaluate the following products :
(a – 8) (a + 2)


Use the direct method to evaluate the following products :
(8 – b) (3 + b)


Use the direct method to evaluate :
(3b−1) (3b+1)


Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)


Evaluate: (2a + 0.5) (7a − 0.3)


Evaluate: (9 − y) (7 + y)


Evaluate: (2 − z) (15 − z)


Evaluate: `(2"x"-3/5)(2"x"+3/5)`


Evaluate: `(2"a"+1/"2a")(2"a"-1/"2a")`


Evaluate: (1.6x + 0.7y) (1.6x − 0.7y)


Expand the following:
(2p - 3q)2


Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1


If `"a"  + 1/"a" = 6;`find `"a"  - 1/"a"`


If `"a"  - 1/"a" = 10;` find `"a"  + 1/"a"`


If m - n = 0.9 and mn = 0.36, find:
m2 - n2.


If `"p"  + (1)/"p" = 6`; find : `"p"^4 + (1)/"p"^4`


Simplify:
(x + y - z)2 + (x - y + z)2


Simplify:

`(x - 1/x)(x^2 + 1 + 1/x^2)`


Give possible expressions for the length and breadth of the rectangle whose area is given by 4a2 + 4a – 3.


Share
Notifications



      Forgot password?
Use app×