Advertisement Remove all ads

Verify the Property: X × (Y × Z) = (X × Y) × Z by Taking: X = − 7 3 , Y = 12 5 , Z = 4 9 - Mathematics

Sum

Verify the property: x × (y × z) = (x × y) × z by taking:

\[x = \frac{- 7}{3}, y = \frac{12}{5}, z = \frac{4}{9}\]
Advertisement Remove all ads

Solution

\[\text{We have to verify that} x \times (y \times z) = (x \times y) \times z . \]
\[(i) x = \frac{- 7}{3}, y = \frac{12}{5}, z = \frac{4}{9}\]
\[x \times (y \times z) = \frac{- 7}{3} \times (\frac{12}{5} \times \frac{4}{9}) = \frac{- 7}{3} \times \frac{16}{15} = \frac{- 112}{45}\]
\[(x \times y) \times z = (\frac{- 7}{3} \times \frac{12}{5}) \times \frac{4}{9} = \frac{- 28}{5} \times \frac{4}{9} = \frac{- 112}{45}\]
\[ \therefore \frac{- 7}{8} \times (\frac{15}{5} \times \frac{4}{9}) = (\frac{- 7}{8} \times \frac{15}{5}) \times \frac{4}{9}\]
\[\text{Hence verified .} \]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 8 Maths
Chapter 1 Rational Numbers
Exercise 1.6 | Q 2.1 | Page 31
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×