Advertisement Remove all ads

Verify Lagrange’s mean value theorem for the following functions : x2-3x-1,x∈[-117,137]. - Mathematics and Statistics

Sum

Verify Lagrange’s mean value theorem for the following functions : `x^2 - 3x - 1, x ∈ [(-11)/7 , 13/7]`.

Advertisement Remove all ads

Solution

The function f given as f(x) = x2 – 3x = 1 is a polynomial function. Hence, it  is continuous on `[(-11)/7 , 13/7]` and differentiable on `((-11)/7, 13/7)`.

Thus, the function f satisfies the conditions of LMVT.

∴ there exists `c ∈ ((-11)/7, 13/7)` such that

f'(c) = `(f(13/7) - f((-11)/7))/(13/7 - ((-11)/7)`   ...(1)

Now, f(x) = x2 – 3x = 1

∴ `f((-11)/7) = ((-11)/7)^2 - 3((-11)/7) - 1`

= `(121)/(49) + (33)/(7) - 1`

= `(121 + 231 - 49)/(49)`

= `(303)/(49)`
and
`f(13/7) = (13/7)^2 - 3(13/7) - 1`

= `(169)/(49) - (39)/(7) - 1`

= `(169 - 273 - 49)/(49)`

= `(-153)/(49)`

Also, f'(x) = `d/dx(x^2 - 3x - 1)`

= 2x – 3 x  – 0
= 2x – 3
∴ f'(c) = 2c – 3

∴ from (1), 2c – 3 = `((-153)/49 - 303/49)/(13/7 11/7) `

∴ 2c – 3 = `-(456)/(49) xx (7)/(24)`

= `(-57)/(21)`

∴ 2c = `(-57)/(21) + 3`

= `(-57 + 63)/(21)`

= `(6)/(21)`

= `(2)/(7)`

∴ c = `(1)/(7)∈((-11)/7 , 13/7)`
Hence, Lagrange’s mean value theorem is verified.

Concept: Lagrange's Mean Value Theorem (Lmvt)
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) 12th Standard HSC Maharashtra State Board
Chapter 2 Applications of Derivatives
Exercise 2.3 | Q 7.3 | Page 80
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×