Maharashtra State BoardHSC Arts 12th Board Exam
Advertisement Remove all ads

Verify Lagrange’s mean value theorem for the following functions : f(x) = (x – 1)(x – 2)(x – 3) on [0, 4]. - Mathematics and Statistics

Sum

Verify Lagrange’s mean value theorem for the following functions : f(x) = (x – 1)(x – 2)(x – 3) on [0, 4].

Advertisement Remove all ads

Solution

The function f given as f(x) = (x – 1)(x – 2)(x – 3)
= (x – 1)(x2 – 5x + 6)
= x3 – 5x2 + 6x – x2 + 5x – 6
= x3 – 6x2 + 11x – 6 is a polynomial function.
Hence, it is continuous on [0, 4] and differentiable on (0, 4).
Thus, the function f satisfies the conditions of Lagrange’s mean value theorem.
∴ there exists c ∈ (0, 4) such that

f'(c) = `(f(4) - f(0))/(4 - 0)`              ...(1)

Now, f(x) = (x – 1)(x – 2)(x – 3)
∴ f(0)
= (0 – 1)(0 – 2)(0 – 3)
= (– 1)(– 2)(– 3)
= – 6
and
f(4)
= (4 – 1)(4 – 2)(4 – 3)
= (3)(2)(1)
=  6

Also, f'(x) = `d/dx(x^3- 6x^2 + 11x - 6)`

= 3x2 – 6 x  2x + 11 x 1 – 0
= 3x2 – 12x + 11
∴ f'(c) = 3c2 – 12x + 11

∴ from (1), 3c2 – 12c + 11 = `(6 - (-6))/(4)`

∴ 3c2 – 12c + 11 = 3
∴ 3c2 – 12c + 8 = 0.

∴ c = `(12 ± sqrt(144 - 4(3)(8)))/(2(3)`

∴ c = `(12 ± sqrt(48))/(6)`

= `(12 ± 4sqrt(3))/(6)`

∴ c = `2 ± (2)/sqrt(3) ∈ (0, 4)`

Hence, Lagrange's mean value theorem is verified.

Concept: Lagrange's Mean Value Theorem (Lmvt)
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) 12th Standard HSC Maharashtra State Board
Chapter 2 Applications of Derivatives
Exercise 2.3 | Q 7.2 | Page 80
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×