###### Advertisements

###### Advertisements

Verify each of the following:

(iv) `2 sin 45^0 cos 45^0`

###### Advertisements

#### Solution

`2 sin 45^0 cos 45^0`

=`2xx1/sqrt(2) xx1/sqrt(2) =1`

Also, sin `90^0 =1`

∴ `2 sin 45^0 cos 45^0 = sin 90^0`

#### APPEARS IN

#### RELATED QUESTIONS

If 𝜃 = 30° verify `cos 2 theta = (1 - tan^2 theta)/(1 + tan^2 theta)`

In rectangle ABCD AB = 20cm ∠BAC = 60° BC, calculate side BC and diagonals AC and BD.

In ∆PQR, right-angled at Q, PQ = 3 cm and PR = 6 cm. Determine ∠P and ∠R.

If sin A = `9/41` find all the values of cos A and tan A

If 3tan θ 4 , show that `((4cos theta - sin theta ))/((4 cos theta + sin theta))=4/5`

In a ΔABC , ∠B = 90° , AB= 24 cm and BC = 7 cm find (i) sin A (ii) cos A (iii) sin C (iv) cos C

Verify each of the following:

(i)`sin 60^0 cos 30^0-cos 60^0 sin 30^0`

Verify each of the following:

(iii) `2 sin 30^0 cos 30^0`

Using the formula, cos A = `sqrt((1+cos2A)/2) ,`find the value of cos 30^{0}, it being given that cos 60^{0} = `1/2`.

Using the formula, sin A = `sqrt((1-cos 2A)/2) ` find the value of sin 30^{0}, it being given that cos 60^{0} = `1/2`

In the following table, a ratio is given in each column. Find the remaining two ratios in the column and complete the table.

sin θ |
`11/61` | `1/2` | `3/5` | ||||||

cos θ |
`35/37` | `1/sqrt3` | |||||||

tan θ |
`1` | `21/20` | `8/15` | `1/(2sqrt2)` |

`(cos 28°)/(sin 62°)` = ?

sin20°^{ } = cos ______°

tan 30° × tan ______° = 1

cos 40° = sin ______°

From the following figure, find the values of :

- sin A
- cos A
- cot A
- sec C
- cosec C
- tan C.

**Given:** 4 cot A = 3** find :**

(i) sin A

(ii) sec A

(iii) cosec

^{2}A - cot

^{2}A.

If cot θ= 1; find the value of: 5 tan^{2} θ+ 2 sin^{2} θ- 3

In the figure given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. **Find:**

(i) sin B

(ii) tan C

(iii) sin^{2} B + cos^{2}B

(iv) tan C - cot B

In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find:

- cos B
- sin C
- tan
^{2}B - sec^{2}B + 2

If sin A = `(sqrt3)/(2)` and cos B = `(sqrt3)/(2)` , find the value of : `(tan"A" – tan"B")/(1+tan"A" tan"B")`

In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.

sec B = `(15)/(12)`

In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cos C

If sinA = 0.8, find the other trigonometric ratios for A.

In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: cot^{2}P - cosec^{2}P

From the given figure, find all the trigonometric ratios of angle B

From the given figure, find the values of cot B

From the given figure, find the values of cosec C

If cos A = `3/5`, then find the value of `(sin"A" - cos"A")/(2tan"A")`

If cos A = `(2x)/(1 + x^2)`, then find the values of sin A and tan A in terms of x

If 3 cot A = 2, then find the value of `(4sin"A" - 3cos"A")/(2sin"A" + 3cos"A")`

If cos θ : sin θ = 1 : 2, then find the value of `(8costheta - 2sintheta)/(4costheta + 2sintheta`

From the given figure, prove that θ + ∅ = 90°. Also prove that there are two other right angled triangles. Find sin α, cos β and tan ∅

A boy standing at a point O finds his kite flying at a point P with distance OP = 25 m. It is at a height of 5 m from the ground. When the thread is extended by 10 m from P, it reaches a point Q. What will be the height QN of the kite from the ground? (use trigonometric ratios)

Given that sin α = `1/2` and cos β = `1/2`, then the value of α + β is ______.