# Verify Associativity of Addition of Rational Numbers I.E., (X + Y) + Z = X + (Y + Z), When: X = − 7 11 , Y = 2 − 5 , Z = − 3 22 - Mathematics

Sum

Verify associativity of addition of rational numbers i.e., (x + y) + z = x + (y + z), when:

$x = \frac{- 7}{11}, y = \frac{2}{- 5}, z = \frac{- 3}{22}$

#### Solution

$x = \frac{- 7}{11}, y = \frac{2}{- 5}, z = \frac{- 3}{22}$
$(x + y) + z = (\frac{- 7}{11} + \frac{2}{- 5}) + \frac{- 3}{22} = (\frac{- 35}{55} + \frac{- 22}{55}) + \frac{- 3}{22} = \frac{- 57}{55} + \frac{- 3}{22} = \frac{- 114}{110} + \frac{- 15}{110} = \frac{- 114 - 15}{110} = \frac{- 129}{110}$
$x + (y + z) = \frac{- 7}{11} + (\frac{2}{- 5} + \frac{- 3}{22}) = \frac{- 7}{11} + (\frac{- 44}{110} + \frac{- 15}{110}) = \frac{- 7}{11} + \frac{- 59}{110} = \frac{- 70}{110} + \frac{- 59}{110} = \frac{- 70 - 59}{110} = \frac{- 129}{110}$
$\therefore (\frac{- 7}{11} + \frac{2}{- 5}) + \frac{- 3}{22} = \frac{- 7}{11} + (\frac{2}{- 5} + \frac{- 3}{22})$
$\text{Hence verified} .$

Is there an error in this question or solution?

#### APPEARS IN

RD Sharma Class 8 Maths
Chapter 1 Rational Numbers
Exercise 1.2 | Q 2.3 | Page 14