Vectors `veca,vecb and vecc ` are such that `veca+vecb+vecc=0 and |veca| =3,|vecb|=5 and |vecc|=7 ` Find the angle between `veca and vecb`
Advertisement Remove all ads
Solution
We need to find the angle between `veca and vecb`
Now `(veca+vecb+vecc)^2=(veca+vecb+vecc).(veca+vecb+vecc)`
`(veca+vecb+vecc)^2=(|veca|^2+|vecb|^2+|vecc|^2+2veca vecb+2vecc vecb+2veca vecc)`
`0=(9+25+49+2veca vecb+2vecc vecb+2veca vecc)`
`0=83+2(veca vecb+vecc vecb+veca vecc)`
`-83/2=(veca vecb+vecc vecb+veca vecc)`
`-83/2=(veca vecb+(-veca-vecb) vecb+(-veca-vecb) vecc) (because vecc=-veca-vecb)`
`-83/2=(-|vecb|^2-|veca|^2-vecavecb)`
`-83/2=(-|vecb|^2-|veca|^2-|veca||vecb|cos theta)`
`83/2=(34+15cosθ)`
`⇒83/2−34=15cosθ`
`⇒15/2=15cosθ`
`⇒1/2=cosθ`
`θ=π/3 or (5π)/3`
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads