Maharashtra State BoardHSC Arts 12th Board Exam
Advertisement Remove all ads

Using vector method, find the incenter of the triangle whose vertices are A(0, 3, 0), B(0, 0, 4) and C(0, 3, 4) - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

Using vector method, find the incenter of the triangle whose vertices are A(0, 3, 0), B(0, 0, 4) and C(0, 3, 4)

Advertisement Remove all ads

Solution

Let `bar"a", bar"b", bar"c"` be the position vectors of points A, B, C respectively of ∆ABC and `bar"h"` be the position vector of its incentre H.

∴ `bar"h" = (|bar"BC"|bar"a" + |bar"AC"|bar"b" + |bar"AB"|bar"c")/(|bar"BC"| + |bar"AC"| + |bar"AB"|)`     ...(i)

∴ `bar"a" = 3hat"j", bar"b" = 4hat"k", bar"c" = 3hat"j" + 4hat"k"`

∴ `bar"BC" = bar"c" - bar"b" = (3hat"j" + 4hat"k") - 4hat"k" = 3hat"j"`

`bar"AC" = bar"c" - bar"a" = (3hat"j" + 4hat"k") - 3hat"j" = 4hat"k"`

`bar"AB" = bar"b" - bar"a" = 4hat"k" - 3hat"j"`

∴ `|bar"BC"| = sqrt(9)` = 3

`|bar"AC"| = sqrt(16)` = 4

and

`|bar"AB"| = sqrt(16 + 9) = sqrt(25)` = 5

∴ `bar"h" = (3(3hat"j") + 4(4hat"k") + 5(3hat"j" + 4hat"k"))/(3 + 4 + 5)`  .......[From (i)]

∴ `bar"h" = (9hat"j" + 16hat"k" + 15hat"j" + 20hat"k")/12`

= `(24hat"j" + 36hat"k")/12`

= `2hat"j" + 3hat"k"`

∴ Incentre of the triangle is H (0, 2, 3).

Concept: Section Formula
  Is there an error in this question or solution?

Video TutorialsVIEW ALL [2]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×