Advertisement Remove all ads

Using vector method, find incentre of the triangle whoose vertices are P(0, 4, 0), Q(0, 0, 3) and R(0, 4, 3). - Mathematics and Statistics

Using vector method, find incentre of the triangle whoose vertices are P(0, 4, 0), Q(0, 0, 3)
and R(0, 4, 3).

Advertisement Remove all ads

Solution

Let `barp, barq ,barr` be the position vectors of vertices P, Q, R of Δ PQR respectively

`barp=4hatj,barq=3hatk,barr=4hatj+3hatk`

`bar(PQ)=barq-barp=3hatk-4hatj=-4hatj+3hatk`

`bar(QR)=barr-barq=4hatj+3hatk-3hatk=4hatj`

`bar(RP)=barp-barr=4hatj-4hatj-3hatk=-3hatk`

Let x, y, z be the lengths of opposites of vertices P,Q,R respectively.

`x=|bar(QR)|=4` 

`y=|bar(RP)|=3`

`z=|bar(PQ)|=sqrt(16+9)=sqrt25=5`

If H(`barh`)is the incentre of `Delta`PQR then

`barh=(xbarp+ybarq+zbarr)/(x+y+z)`

`=(4(4hatj)+3(3hatk)+5(4hatj+3hatk))/(4+3+5)`

`=(16hatj+9hatk+20hatj+15hatk)/12`

`=(36hatj+24hatk)/12=3hatj+2hatk`

Concept: Vectors - Application of Vectors to Geometry
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×