Chart
Using the truth table proves the following logical equivalence.
∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)
Advertisement Remove all ads
Solution
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
p | q | ∼ p | ∼ q | p ↔ q | ∼ (p ↔ q) | p ∧ ∼ q | q ∧ ∼ p | (p ∧ ∼ q) ∨ (q ∧ ∼ p) |
T | T | F | F | T | F | F | F | F |
T | F | F | T | F | T | T | F | T |
F | T | T | F | F | T | F | T | T |
F | F | T | T | T | F | F | F | F |
The entries in columns 6 and 9 are identical.
∴ ∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)
Concept: Statement Patterns and Logical Equivalence
Is there an error in this question or solution?
APPEARS IN
Advertisement Remove all ads