Advertisement Remove all ads

Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0 - Mathematics

Sum

Using the method of integration, find the area of the region bounded by the lines 3x − 2y + 1 = 0, 2x + 3y − 21 = 0 and x − 5y + 9 = 0

Advertisement Remove all ads

Solution

`3"x" - 2"y" + 1 = 0 ⇒ "y"_1 =((3"x"+1))/2` ...........(i)

`2"x" - 3"y" - 21 = 0 ⇒ "y"_2 =((21-2"x"))/3` .....(ii)

`"x" - 5"y" + 9 = 0 ⇒ "y"_3 = (("x"+9))/5` ......(iii)

Point of intersection of (i) and (ii) is A(3, 5)

Point of intersection of (ii) and (iii) is B(6, 3) and

Point of intersection of (iii) and (i) is C(1, 2).

Therefore, the area of the region bounded=`int_1^3"y"_1."dx"+int_3^6"y"_2."dx"-int_1^6"y"_3". dx"`

`=int_3^1((3"x"+1))/2."dx"+int_3^6((21-2"x"))/3."dx"-int_1^6(("x"+9))/5."dx"`

`=1/2((3"x"^2)/2+"x")_1^3+1/3(21"x"-"x"^2)_3^6-1/5("x"^2/2+9"x")_1^6`

`1/2[14]+1/3[36]-1/5[125/2]`

`= 7+12-12.5`

`= 6.5  "sq.units"`

Concept: Area of the Region Bounded by a Curve and a Line
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×