Sum
Using the Remainder Theorem, factorise the expression 3x3 + 10x2 + x – 6. Hence, solve the equation 3x3 + 10x2 + x – 6 = 0.
Advertisement Remove all ads
Solution
`"Left f "(x)=3x^3+10x^2+x-6`
`for x =-1,`
`f(x)=f(-1)=3(-1)^3+10(-1)^2+(-1)-6=-3+10-1-6=0 `
`"Hence,(x+1) is a factor of f(x)" .`
∴ `3x^3+10x^2+x-6=(x+1)(3x^2+7x-6)`
=`(x+1)(3x^2+9x-2x-6) `
= `(x-1)[3x(x-3)-2(x+3)]`
=`(x+1)(x+3)(3x-2)`
`now, 3x^3+10x^2+x-6=0`
`(x+1)(x+3)(3x-2)=0`
`x=-1, -3, 2/3`
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads