Using properties of sets, show that for any two sets A and B,\[\left( A \cup B \right) \cap \left( A \cap B' \right) = A\]
Advertisement Remove all ads
Solution
\[LHS = \left( A \cup B \right) \cup \left( A \cap B' \right)\]
\[ \Rightarrow LHS = \left\{ \left( A \cup B \right) \cap A \right\} \cup \left\{ \left( A \cup B \right) \cap B' \right\}\]
\[ \Rightarrow LHS = \left\{ \left( A \cup B \right) \cap A \right\} \cup \left\{ \left( A \cup B \right) \cap B' \right\}\]
\[ \Rightarrow LHS = A \cup \left\{ \left( A \cup B \right) \cap B' \right\}\]
\[ \Rightarrow LHS = A \cup \left\{ \left( A \cap B' \right) \cup \left( B \cap B' \right) \right\} \left( \because B \cap B = \phi \right)\]
\[ \Rightarrow LHS = A \cup \left( A \cap B' \right)\]
\[ \Rightarrow LHS = A = RHS\]
Concept: Universal Set
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads