Share
Notifications

View all notifications
Advertisement

Using the Properties of Proportion Solve for X Given (X^4 + 1)/(2x^2) = 17/8 - Mathematics

Login
Create free account


      Forgot password?

Question

Using the properties of proportion solve for x given `(x^4 + 1)/(2x^2) = 17/8`

Solution

`(x^4 + 1)/(2x^2) = 17/8`

Applying componendo and dividendo we get

`(x^4 + 1 + 2x^2)/(x^4 + 1 - 2x^2) = (17 + 8)/(17 - 8)`

`=> ((x^2)^2 + (1)^2 + 2 xx x^2 + 1)/((x^2)^2 + (1)^2 - 2 xx x^2 xx 1) = 25/9`

`=> (x^2 +  1)^2/(x^2 - 1)^2 = 5^2/3^2`

`=> ((x^2 + 1)/(x^2 - 1))^2 = (5/3)^2`

`=> (x^2 + 1)/(x^2 - 1) = 5/3`

Applying componeddo and diividendo we get

`(x^2 + 1 + x^2 - 1)/(x^2 + 1 - x^2 + 1) = (5 + 3)/(5 - 3)`

`=> (2x^2)/2 = 8/2`

`=> x^2 = 4`

`=> x = +- 2`

  Is there an error in this question or solution?
Advertisement

APPEARS IN

 Selina Solution for Concise Mathematics for Class 10 ICSE (2020 (Latest))
Chapter 7: Ratio and Proportion (Including Properties and Uses)
Exercise 7(C) | Q: 13 | Page no. 102
Advertisement

Video TutorialsVIEW ALL [1]

Using the Properties of Proportion Solve for X Given (X^4 + 1)/(2x^2) = 17/8 Concept: Componendo and Dividendo Properties.
Advertisement
View in app×