Advertisement Remove all ads

Using Integration, Find the Area of Triangle Abc, Whose Vertices Are A(2, 5), B(4, 7) and C(6, 2). - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

Using integration, find the area of triangle ABC, whose vertices are A(2, 5), B(4, 7) and C(6, 2).

Advertisement Remove all ads

Solution

Vertices of the given triangle are A(2,5), B(4,7), and C(6,2).
Equation of AB
`y - 5 = (7-5)/(4-2) (x -2)`
⇒ `y - 5 = x -2`
⇒  `y = x + 3`

Let's say y1= x+3

Equation of BC:
`y -7= (2-7)/(6-4)(x-4)`
⇒ `y = (-5)/(2) (x-4) +7=(-5)/(2) x+17`
Let's say `y_2 = -(5)/(2)x+17`

Equation of AC:
`y -5 = (2-5)/(6-2) (x-2)`
⇒  `y = (-3)/(4)(x-2)+5 = (-3)/(4)x+13/2`

Let's say `y_3 = (-3)/(4)x+13/2`

`"ar"  (Δ"ABC") = int_2^4 y_1 dx + int_4^6 y_2 dx - int_2^6 y_3 dx`

= `int_2^4 (x+3) dx + int_4^6 ((-5)/2 x+17) dx -int_2^6 (-3)/4 x+13/2)dx`

= `[x^2/2 + 3x]_2^4 + [(-5x^2)/4 + 17x]_4^6 - [(-3x^2)/8 + (13x)/2]_2^6`

= `[16/2 + 12 - 4/2 -6]+[(-180)/4 + 102+80/4-68]-[(-108)/8+78/2+12/8-26/2]`

= 12 + 9 - 14

= 7 sq units.

Concept: Area of a Triangle
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×