Using Integration, Find the Area of Triangle Abc, Whose Vertices Are A(2, 5), B(4, 7) and C(6, 2). - Mathematics

Advertisements
Advertisements
Sum

Using integration, find the area of triangle ABC, whose vertices are A(2, 5), B(4, 7) and C(6, 2).

Advertisements

Solution

Vertices of the given triangle are A(2,5), B(4,7), and C(6,2).
Equation of AB
`y - 5 = (7-5)/(4-2) (x -2)`
⇒ `y - 5 = x -2`
⇒  `y = x + 3`

Let's say y1= x+3

Equation of BC:
`y -7= (2-7)/(6-4)(x-4)`
⇒ `y = (-5)/(2) (x-4) +7=(-5)/(2) x+17`
Let's say `y_2 = -(5)/(2)x+17`

Equation of AC:
`y -5 = (2-5)/(6-2) (x-2)`
⇒  `y = (-3)/(4)(x-2)+5 = (-3)/(4)x+13/2`

Let's say `y_3 = (-3)/(4)x+13/2`

`"ar"  (Δ"ABC") = int_2^4 y_1 dx + int_4^6 y_2 dx - int_2^6 y_3 dx`

= `int_2^4 (x+3) dx + int_4^6 ((-5)/2 x+17) dx -int_2^6 (-3)/4 x+13/2)dx`

= `[x^2/2 + 3x]_2^4 + [(-5x^2)/4 + 17x]_4^6 - [(-3x^2)/8 + (13x)/2]_2^6`

= `[16/2 + 12 - 4/2 -6]+[(-180)/4 + 102+80/4-68]-[(-108)/8+78/2+12/8-26/2]`

= 12 + 9 - 14

= 7 sq units.

  Is there an error in this question or solution?
2018-2019 (March) 65/1/1

RELATED QUESTIONS

If the points A(x, 2), B(−3, −4) and C(7, − 5) are collinear, then the value of x is:

(A) −63
(B) 63
(C) 60
(D) −60


If the points P(–3, 9), Q(a, b) and R(4, – 5) are collinear and a + b = 1, find the values of a and b.


The coordinates of A, B, C are (6, 3), (–3, 5) and (4, – 2) respectively and P is any point (x, y). Show that the ratio of the areas of triangle PBC and ABC is


 Find the centre of a circle passing through the points (6, − 6), (3, − 7) and (3, 3).


Find the area of a triangle with vertices at the point given in the following:

(1, 0), (6, 0), (4, 3)


Find the area of a triangle with vertices at the point given in the following:

(2, 7), (1, 1), (10, 8)


Find the area of a triangle with vertices at the point given in the following:

(−2, −3), (3, 2), (−1, −8)


Show that points A (a, b + c), B (b, c + a), C (c, a + b) are collinear.


Find values of k if area of triangle is 4 square units and vertices are (k, 0), (4, 0), (0, 2)


Find values of k if area of triangle is 4 square units and vertices are (−2, 0), (0, 4), (0, k)


Find equation of line joining (1, 2) and (3, 6) using the determinant.


Find equation of line joining (3, 1) and (9, 3) using determinant.


If area of triangle is 35 square units with vertices (2, −6), (5, 4), and (k, 4), then k is ______.


Find the area of the following triangle:


Find the area of the following triangle:


Find the missing value:

Base Height Area of triangle
15 cm ______ 87 cm2

ΔABC is right angled at A (see the given figure). AD is perpendicular to BC. If AB = 5 cm, BC = 13 cm and AC = 12 cm, Find the area of ΔABC. Also find the length of AD.


If the coordinates of the mid-points of the sides of a triangle are (3, 4) (4, 6) and (5, 7), find its vertices.


Find the area of a triangle two sides of which are 18 cm and 10 cm and the perimeter is 42cm ?


In a ΔABC, AB = 15 cm, BC = 13 cm and AC = 14 cm. Find the area of ΔABC and hence its altitude on AC ?


Find the area of the blades of thc magnetic compass shown in Fig.. 12.27. (Take √11 = 3.32).


prove  that the points A (7, 10), B(-2, 5) and C(3, -4) are the vertices of an isosceles right triangle.


Show that the following points are collinear:

A(-5,1), B(5, 5) and C(10, 7)


Find the value of x for which points A(x, 2), B(-3, -4) and C(7, -5) are collinear.


Find a relation between x and y, if the points A(2, 1), B(x, y) and C(7,5) are collinear.


 Using determinants, find the values of k, if the area of triangle with vertices (–2, 0), (0, 4) and (0, k) is 4 square units. 


In ☐ ABCD, l(AB) = 13 cm, l(DC) = 9 cm, l(AD) = 8 cm, find the area of ☐ ABCD.


Using integration, find the area of the triangle whose vertices are (2, 3), (3, 5) and (4, 4).


What is the area of a triangle with base 4.8 cm and height 3.6 cm?


Find the area of the following triangle:


In ∆PQR, PR = 8 cm, QR = 4 cm and PL = 5 cm.

Find:
(i) the area of the ∆PQR
(ii) QM.


If the sides of a triangle are 3 cm, 4 cm and 5 cm, then the area is 


The table given below contains some measures of the right angled triangle. Find the unknown values.

Base Height Area
20 cm 40 cm ?

The table given below contains some measures of the right angled triangle. Find the unknown values.

Base Height Area
5 feet ? 20 sq.feet

The table given below contains some measures of the right angled triangle. Find the unknown values.

Base Height Area
? 12 m 24 sq.m

A field is in the shape of a right angled triangle whose base is 25 m and height 20 m. Find the cost of levelling the field at the rate of ₹ 45 per sq.m2


If Δ = `|(1, x, x^2),(1, y, y^2),(1, z, z^2)|`, Δ1 = `|(1, 1, 1),(yz, zx, xy),(x, y, z)|`, then prove that ∆ + ∆1 = 0.


In a triangle ABC, if `|(1, 1, 1),(1 + sin"A", 1 + sin"B", 1 + sin"C"),(sin"A" + sin^2"A", sin"B" + sin^2"B", sin"C" + sin^2"C")|` = 0, then prove that ∆ABC is an isoceles triangle.


Let ∆ = `|("A"x, x^2, 1),("B"y, y^2, 1),("C"z, z^2, 1)|`and ∆1 = `|("A", "B", "C"),(x, y, z),(zy, zx, xy)|`, then ______.


Show that the points (a + 5, a – 4), (a – 2, a + 3) and (a, a) do not lie on a straight line for any value of a.


Show that the ∆ABC is an isosceles triangle if the determinant

Δ = `[(1, 1, 1),(1 + cos"A", 1 + cos"B", 1 + cos"C"),(cos^2"A" + cos"A", cos^2"B" + cos"B", cos^2"C" + cos"C")]` = 0


The value of the determinant `abs((1,"x","x"^3),(1,"y","y"^3),(1,"z","z"^3))` is ____________.


If the points (3, -2), (x, 2), (8, 8) are collinear, then find the value of x.


If the points (a1, b1), (a2, b2) and(a1 + a2, b1 + b2) are collinear, then ____________.


If the points (2, -3), (k, -1), and (0, 4) are collinear, then find the value of 4k.


Find the area of the triangle whose vertices are (-2, 6), (3, -6), and (1, 5).


Points A(–6, 10), B(–4, 6) and C(3, –8) are collinear such that AB = `2/9` AC.


The area of a triangle with base 4 cm and height 6 cm is 24 cm2.


The area of ∆ABC is 8 cm2 in which AB = AC = 4 cm and ∠A = 90º.


Find the cost of laying grass in a triangular field of sides 50 m, 65 m and 65 m at the rate of Rs 7 per m2.


Find the area of the trapezium PQRS with height PQ given in figure


The area of a trapezium is 475 cm2 and the height is 19 cm. Find the lengths of its two parallel sides if one side is 4 cm greater than the other.


A rectangular plot is given for constructing a house, having a measurement of 40 m long and 15 m in the front. According to the laws, a minimum of 3 m, wide space should be left in the front and back each and 2 m wide space on each of other sides. Find the largest area where house can be constructed.


The dimensions of a rectangle ABCD are 51 cm × 25 cm. A trapezium PQCD with its parallel sides QC and PD in the ratio 9:8, is cut off from the rectangle as shown in the figure. If the area of the trapezium PQCD is `5/6` h part of the area of the rectangle, find the lengths QC and PD.


The area of a triangle with vertices A, B, C is given by ______. 


Area of triangle MNO in the figure is ______.


Ratio of areas of ∆MNO, ∆MOP and ∆MPQ in the given figure is ______.


Area of triangle PQR is 100 cm2 as shown in the below figure. If altitude QT is 10 cm, then its base PR is ______.


Ratio of the area of ∆WXY to the area of ∆WZY is 3:4 in the given figure. If the area of ∆WXZ is 56 cm2 and WY = 8 cm, find the lengths of XY and YZ.


Let a vector `αhati + βhatj` be obtained by rotating the vector `sqrt(3)hati + hatj` by an angle 45° about the origin in counter-clockwise direction in the first quadrant. Then the area of triangle having vertices (α, β), (0, β) and (0, 0) is equal to ______.


Using determinants, find the area of ΔPQR with vertices P(3, 1), Q(9, 3) and R(5, 7). Also, find the equation of line PQ using determinants.


Share
Notifications



      Forgot password?
Use app×