Using integration find the area of the triangle formed by positive x-axis and tangent and normal of the circle - Mathematics

Advertisements
Advertisements

Using integration find the area of the triangle formed by positive x-axis and tangent and normal of the circle

`x^2+y^2=4 at (1, sqrt3)`

Advertisements

Solution

The given equation of the circle is x2+y2=4.

The equation of the normal to the circle at (1,√3) is same as the line joining the points (1,√3) and (0, 0), which is given by

`(y−sqrt3)/x−1=(sqrt3−0)/(1−0)`

`(y−sqrt3)/x−1=sqrt3`

`⇒y−sqrt3=sqrt3x−sqrt3`

`⇒y=sqrt3x                    .....(1)`

So, the slope of normal is `sqrt3.`

We know that the product of the slopes of the normal and the tangent is 1

Therefore, the slope of tangent is `−1/sqrt3`

Now, the equation of the tangent to the circle at (1,√3) is given by

`(y−sqrt3)/x−1=-1/sqrt3`

`⇒sqrt3y−3=−x+1`

y=−(x+4)/sqrt3          .....(2)

Putting y = 0 in (2), we get x = 4.

Thus, ABC is the triangle formed by the positive x-axis and tangent and normal to the given circle at `(1,sqrt3)`

.

Now,

Area of ∆AOB = Area of ∆AOM + Area of ∆AMB

`=int_0^1ydx+int_1^4y dx`

`=int_0^1sqrt3xdx+int_1^4((-x+4)/sqrt3)dx`

`=[(sqrt3x^2)/2]_0^1+int_1^4-x/sqrt3dx+int_1^44/sqrt3dx`

`=(sqrt3/2-0)-[x^2/(2sqrt3)]_1^4+[4/sqrt3x]_1^4`

`=sqrt3/2-16/(2sqrt3)+1/(2sqrt3)+16/sqrt3-4/sqrt3`

`=sqrt3/2+(3sqrt3)/2`

`=2sqrt3`

Thus, the area of the triangle so formed is `2sqrt3` square units.

  Is there an error in this question or solution?
2014-2015 (March) Delhi Set 1

RELATED QUESTIONS

Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32.


Using integration find the area of the region {(x, y) : x2+y2 2ax, y2 ax, x, y  0}.


Find the area of the region bounded by the curve y2 = x and the lines x = 1, x = 4 and the x-axis.


Find the area of the region bounded by y2 = 9x, x = 2, x = 4 and the x-axis in the first quadrant.


Find the area of the region bounded by x2 = 4yy = 2, y = 4 and the y-axis in the first quadrant.


Find the area of the region bounded by the ellipse `x^2/4 + y^2/9 = 1`


Find the area of the smaller part of the circle x2 + y2 = a2 cut off by the line  `x = a/sqrt2`


Find the area of the region bounded by the parabola y = x2 and y = |x| .


Area lying in the first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and = 2 is

A. π

B. `pi/2`

C. `pi/3`

D. `pi/4`


Area of the region bounded by the curve y2 = 4xy-axis and the line y = 3 is

A. 2

B. 9/4

C. 9/3

D. 9/2


Find the area of the region lying in the first quadrant and bounded by y = 4x2x = 0, y = 1 and = 4


Sketch the graph of y = |x + 3| and evaluate `int_(-6)^0 |x + 3|dx`


Find the area enclosed by the parabola 4y = 3x2 and the line 2y = 3x + 12


Find the area of the region enclosed by the parabola x2 = y, the line y = x + 2 and x-axis


Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B (4, 5) and C (6, 3).


Find the area of the region {(x, y) : y2 ≤ 4x, 4x2 + 4y2 ≤ 9}


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices are A (4 , 1), B (6, 6) and C (8, 4).


Find the area enclosed between the parabola 4y = 3x2 and the straight line 3x - 2y + 12 = 0.


Find the area bounded by the circle x2 + y2 = 16 and the line `sqrt3 y = x` in the first quadrant, using integration.


Find the equation of an ellipse whose latus rectum is 8 and eccentricity is `1/3`


Using integration, find the area of the region {(x, y) : x2 + y2 ≤ 1 ≤ x + y}.


Find the area of the smaller region bounded by the ellipse \[\frac{x^2}{9} + \frac{y^2}{4} = 1\] and the line \[\frac{x}{3} + \frac{y}{2} = 1 .\]


Draw a rough sketch and find the area bounded by the curve x2 = y and x + y = 2.


Find the area of the region. 

{(x,y) : 0 ≤ y ≤ x, 0 ≤ y ≤ x + 2 ,-1 ≤ x ≤ 3} .


Find the area of the region bounded by the following curves, the X-axis and the given lines:  y = x4, x = 1, x = 5


Find the area of the region bounded by the following curves, the X-axis, and the given lines:

y = `sqrt(6x + 4), x = 0, x = 2`


Find the area of the region bounded by the following curves, the X-axis and the given lines: y = 2 – x2, x = – 1, x = 1


Find the area of the region bounded by the parabola y2 = 4x and the line x = 3.


Choose the correct alternative :

Area of the region bounded by the curve x2 = y, the X-axis and the lines x = 1 and x = 3 is _______.


Choose the correct alternative :

Area of the region bounded by y = x4, x = 1, x = 5 and the X-axis is _____.


Fill in the blank : 

Area of the region bounded by y = x4, x = 1, x = 5 and the X-axis is _______.


Fill in the blank :

Area of the region bounded by x2 = 16y, y = 1, y = 4 and the Y-axis, lying in the first quadrant is _______.


Fill in the blank :

The area of the region bounded by the curve x2 = y, the X-axis and the lines x = 3 and x = 9 is _______.


The area of the region bounded by y2 = 4x, the X-axis and the lines x = 1 and x = 4 is _______.


State whether the following is True or False :

The area bounded by the curve x = g (y), Y-axis and bounded between the lines y = c and y = d is given by `int_"c"^"d"x*dy = int_(y = "c")^(y = "d") "g"(y)*dy` 


Solve the following :

Find the area of the region bounded by the curve xy = c2, the X-axis, and the lines x = c, x = 2c.


Choose the correct alternative:

Area of the region bounded by y2 = 16x, x = 1 and x = 4 and the X axis, lying in the first quadrant is ______


Choose the correct alternative:

Area of the region bounded by x = y4, y = 1 and y = 5 and the Y-axis lying in the first quadrant is ______


Choose the correct alternative:

Area of the region bounded by the parabola y2 = 25x and the lines x = 5 is ______


State whether the following statement is True or False:

The area bounded by the curve y = f(x) lies on the both sides of the X-axis is `|int_"a"^"b" "f"(x)  "d"x| + |int_"b"^"c" "f"(x)  "d"x|`


The area of the circle x2 + y2 = 16 is ______


The area of the region bounded by the curve y2 = 4x, the X axis and the lines x = 1 and x = 4 is ______


The area of the region x2 = 4y, y = 1 and y = 2 and the Y axis lying in the first quadrant is ______


The area of the region bounded by y2 = 25x, x = 1 and x = 2 the X axis is ______


Find area of the region bounded by the curve y = – 4x, the X-axis and the lines x = – 1 and x = 2


Find area of the region bounded by the parabola x2 = 36y, y = 1 and y = 4, and the positive Y-axis


Find area of the region bounded by the parabola x2 = 4y, the Y-axis lying in the first quadrant and the lines y = 3


Find the area of the circle x2 + y2 = 16


If `int_0^(pi/2) log (cos x) "dx" = - pi/2 log 2,` then `int_0^(pi/2) log (cosec x)`dx = ?


The area of the region bounded by the curve y = 4x3 − 6x2 + 4x + 1 and the lines x = 1, x = 5 and X-axis is ____________.


The area enclosed between the curve y = loge(x + e) and the coordinate axes is ______.


`int_0^log5 (e^xsqrt(e^x - 1))/(e^x + 3)` dx = ______ 


The ratio in which the area bounded by the curves y2 = 8x and x2 = 8y is divided by the line x = 2 is ______ 


Area bounded by the curve xy = 4, X-axis between x = 1, x = 5 is ______.


The area of the region bounded by the X-axis and the curves defined by y = cot x, `(pi/6 ≤ x ≤ pi/4)` is ______.


The area of the region bounded by the curve y = x IxI, X-axis and the ordinates x = 2, x = –2 is ______.


Which equation below represents a parabola that opens upward with a vertex at (0, – 5)?


The equation of curve through the point (1, 0), if the slope of the tangent to t e curve at any point (x, y) is `(y - 1)/(x^2 + x)`, is


Equation of a common tangent to the circle, x2 + y2 – 6x = 0 and the parabola, y2 = 4x, is:


If a2 + b2 + c2 = – 2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, 1 + c^2x)|` then f(x) is a polynomial of degree


The area included between the parabolas y2 = 4a(x +a) and y2 = 4b(x – a), b > a > 0, is


The area of the circle `x^2 + y^2 = 16`, exterior to the parabola `y = 6x`


The slope of a tangent to the curve y = 3x2 – x + 1 at (1, 3) is ______.


Find the area between the two curves (parabolas)

y2 = 7x and x2 = 7y.


Area of the region bounded by y= x4, x = 1, x = 5 and the X-axis is ______.


The area (in sq.units) of the part of the circle x2 + y2 = 36, which is outside the parabola y2 = 9x, is ______.


The area of the region bounded by the curve y = sin x and the x-axis in [–π, π] is ______.


Area in first quadrant bounded by y = 4x2, x = 0, y = 1 and y = 4 is ______.


Area bounded by the curves y = `"e"^(x^2)`, the x-axis and the lines x = 1, x = 2 is given to be α square units. If the area bounded by the curve y = `sqrt(ℓ "n"x)`, the x-axis and the lines x = e and x = e4 is expressed as (pe4 – qe – α), (where p and q are positive integers), then (p + q) is ______.


If area of the region bounded by y ≥ cot( cot–1|In|e|x|) and x2 + y2 – 6 |x| – 6|y| + 9 ≤ 0, is λπ, then λ is ______.


The area bounded by the x-axis and the curve y = 4x – x2 – 3 is ______.


Area bounded by y = sec2x, x = `π/6`, x = `π/3` and x-axis is ______.


The figure shows as triangle AOB and the parabola y = x2. The ratio of the area of the triangle AOB to the area of the region AOB of the parabola y = x2 is equal to ______.


The area (in sq. units) of the region {(x, y) : y2 ≥ 2x and x2 + y2 ≤ 4x, x ≥ 0, y ≥ 0} is ______.


The area bounded by the curve | x | + y = 1 and X-axis is ______.


If the area enclosed by y = f(x), X-axis, x = a, x = b and y = g(x), X-axis, x = a, x = b are equal, then f(x) = g(x).


Share
Notifications



      Forgot password?
Use app×