Using integration find the area of the triangle formed by positive x-axis and tangent and normal of the circle
`x^2+y^2=4 at (1, sqrt3)`
Solution
The given equation of the circle is x2+y2=4.
The equation of the normal to the circle at (1,√3) is same as the line joining the points (1,√3) and (0, 0), which is given by
`(y−sqrt3)/x−1=(sqrt3−0)/(1−0)`
`(y−sqrt3)/x−1=sqrt3`
`⇒y−sqrt3=sqrt3x−sqrt3`
`⇒y=sqrt3x .....(1)`
So, the slope of normal is `sqrt3.`
We know that the product of the slopes of the normal and the tangent is −1
Therefore, the slope of tangent is `−1/sqrt3`
Now, the equation of the tangent to the circle at (1,√3) is given by
`(y−sqrt3)/x−1=-1/sqrt3`
`⇒sqrt3y−3=−x+1`
⇒y=−(x+4)/sqrt3 .....(2)
Putting y = 0 in (2), we get x = 4.
Thus, ABC is the triangle formed by the positive x-axis and tangent and normal to the given circle at `(1,sqrt3)`
.
Now,
Area of ∆AOB = Area of ∆AOM + Area of ∆AMB
`=int_0^1ydx+int_1^4y dx`
`=int_0^1sqrt3xdx+int_1^4((-x+4)/sqrt3)dx`
`=[(sqrt3x^2)/2]_0^1+int_1^4-x/sqrt3dx+int_1^44/sqrt3dx`
`=(sqrt3/2-0)-[x^2/(2sqrt3)]_1^4+[4/sqrt3x]_1^4`
`=sqrt3/2-16/(2sqrt3)+1/(2sqrt3)+16/sqrt3-4/sqrt3`
`=sqrt3/2+(3sqrt3)/2`
`=2sqrt3`
Thus, the area of the triangle so formed is `2sqrt3` square units.