Advertisement Remove all ads

Using De Moivre’S Theorem Prove That] Cos 6 θ − Sin 6 θ = 1 16 ( Cos 6 θ + 15 Cos 2 θ ) - Applied Mathematics 1

Sum

Using De Moivre’s theorem prove that]

`cos^6theta-sin^6theta=1/16(cos6theta+15cos2theta)`

Advertisement Remove all ads

Solution

Let as above x=cosθ+isinθ, then `1/x=costheta-isintheta`

`(2costheta)^6=(x+1/x)^6`

`=x^6+6x^5 1/x+15x^4 1/x^2+20x^3 1/x^3+15x^2 1/x^4+6x^1 1/x^5+1/x^6`

`=x^6+6x^5 +15x^2+20+15 1/x^2+6 1/x^4+ 1/x^6`…………………….(1)

`(2isintheta)^6=(x-1/x)^6`

`=x^6-6x^5+15x^2-20+15 1/x^2-6 1/x^4+1/x^6` ...................(2)

`(2sintheta)^6=x^6+6x^5-15x^2+20-15 1/x^2+6 1/x^4-1/x^6`

Subtracting (2) from (1),

`2^6(cos^6theta-sin^6theta)=[x^6+6x^5+15x^2+20+15 1/x^2+6 1/x^4+1/x^6]-[-x^6+6x^5-15x^2+20-15 1/x^2+6 1/x^4-1/x^6]`

`=2(x^6+1/x^6)+15(x^2+1/x^2)`

`=2cos6theta+15cos2theta..................[(x^6+1/x^6)=cos6theta]`

`therefore 2^6(cos^6theta-sin^6theta)=2cos6theta+15cos2theta`

`cos^6theta-sin^6theta=1/16(cos6theta+15cos2theta)`

Concept: D’Moivre’S Theorem
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×