Advertisement Remove all ads

Using De Moivre’S Theorem, Find the Least Positive Integer N Such that ((2i)/(1+I))^N is a Positive Integer - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

Using De Moivre’s theorem, find the least positive integer n such that `((2i)/(1+i))^n`  is a positive integer.

Advertisement Remove all ads

Solution

We have,  `(2i)/(1+i) = (2i)/(1+i) xx (1-i)/(1-i)`

= `(2(1+i))/(2) = 1 + i`

Let  1 + i = r cos θ + i r sin θ 
⇒ r cos θ  = 1, r sin θ  = 1
∴ r2 (cos2 θ  + sin2 θ ) = (1)2 + (1)
   r2 = 2 ⇒ r = `sqrt2`

and  tan θ = `(1)/(1)`

tan θ  = tan `(π/4)`

θ = `(π)/(4)`

`((2i)/(1+i)) = sqrt2 ( cos  (π)/(4) + i sin  (π)/(4))`

`((2i)/(1+i))^n = [ sqrt2 ( cos  (π)/(4) + i sin  (π)/(4)]^n`

= `2^(n/2) ( cos  (nπ)/(4) + i sin  (nπ)/(4))`

Which is a positive integer

If  `(nπ)/(4)` = 0, 2π, 4π, 6π, ...

⇒ n = 0, 8, 16, 24, ...

⇒ The least value of n is 4

Concept: Introduction of Integrals
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×